Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 31;144(34):15480-15487.
doi: 10.1021/jacs.2c07297. Epub 2022 Aug 17.

Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds

Affiliations

Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds

Jin Zhu et al. J Am Chem Soc. .

Abstract

An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.

PubMed Disclaimer

Figures

Scheme 1.
Scheme 1.
Asymmetric propargylic functionalization for 1,5-enyne synthesis
Scheme 2.
Scheme 2.
Preliminary results for propargylic C–H allylation
Scheme 3.
Scheme 3.. Diversification of product 3na
aConditions: (a) Ph3PAuCl (cat.), AgSbF6 (cat.), CH2Cl2, rt, 0.5 h; (b) Sulfonamide 8S, Pd(OAc)2 (cat.), Ph3P (cat.), Cs2CO3, CsI, norbornene, DMF, 130 °C, 12 h; (c) 9-BBN, THF, 2h; NaBO3·H2O, H2O, rt, 3 h; (d) TsCl, Et3N, DMAP, CH2Cl2, rt, 4 h; (e) BnNH2, K2CO3, MeCN, reflux, 22 h.
Scheme 4.
Scheme 4.
Selected mechanistic studies and proposed catalytic cycle

Similar articles

Cited by

References

    1. For selected reviews on enantioselective C–H functionalization, see:

    2. Saint-Denis TG; Zhu R-Y; Chen G; Wu Q-F; Yu J-Q Enantioselective C(sp3)–H Bond Activation by Chiral Transition Metal Catalysts. Science 2018, 359, eaao4798. - PMC - PubMed
    3. Liu B; Romine AM; Rubel CZ; Engle KM; Shi B-F Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp3)–H Bonds, Chem. Rev 2021, 121, 14957–15074. - PMC - PubMed
    4. Lu Q; Glorius F Radical Enantioselective C(sp3)–H Functionalization, Angew. Chem., Int. Ed 2017, 56, 49–51. - PubMed
    5. Zhang C; Li Z-L; Gu Q-S; Liu X-Y Catalytic Enantioselective C(sp3)–H Functionalization Involving Radical Intermediates, Nature Commun. 2021, 12, 475. - PMC - PubMed
    6. Woźniak Ł; Tan J-F; Nguyen Q-H; Madron du Vigné A; Smal V; Cao Y-X; Cramer N Catalytic Enantioselective Functionalization of C–H Bonds by Chiral Iridium Complexes, Chem. Rev 2020, 120, 10516–10543. - PubMed
    7. Yoshino T; Satake S; Matsunaga S Diverse Approaches for Enantioselective C–H Functionalization Reactions Using Group 9 CpxMIII Catalysts, Chem. Eur. J 2020, 26, 7346–7357. - PubMed
    8. Lapuh MI; Mazeh S; Besset T Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization, ACS Catalysis 2020, 10, 12898–12919.
    9. Lv J-Z; Wei T-Y; Yang L-Y; Yang D-F; Li H-L Different Chiral Ligands Assisted Enantioselective C–H Functionalization with Transition-Metal Catalysts, Catalysts 2022, 12, 537–551.
    10. Miller JL; Lawrence J-MIA; Rodriguez del Rey FO; Floreancig PE Synthetic Applications of Hydride Abstraction Reactions By Organic Oxidants, Chem. Soc. Rev 2022, 51, 5660–5690. - PubMed
    11. Das A; Patil NT Enantioselective C–H Functionalization Reactions Under Gold Catalysis, Chem. Eur. J 2022, 28, e202104371. - PubMed
    12. Doerksen RS; Meyer CC; Krische MJ Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis, A ngew. Chem., Int. Ed 2019, 58, 14055–14064. - PMC - PubMed
    1. For selected reviews on alkyne synthesis, see:

    2. Habrant D; Rauhala V; Koskinen AMP Conversion of carbonyl compounds to alkynes: general overview and recent developments, Chem. Soc. Rev 2010, 39, 2007–2017. - PubMed
    3. Shaw R; Elagamy A; Althagafi I; Pratap R Synthesis of Alkynes from Non-alkyne Sources. Org. Biomol. Chem 2020, 18, 3797–3817. - PubMed
    4. Trost BM; Masters JT Transition Metal-Catalyzed Couplings of Alkynes to 1,3-Enynes: Modern Methods and Synthetic Applications. Chem. Soc. Rev 2016, 45, 2212–2238. - PMC - PubMed
    5. Chinchilla R; Nájera C The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry, Chem. Rev 2007, 107, 874–922. - PubMed
    6. Chinchilla R; Nájera C Recent Advances in Sonogashira Reactions. Chem. Soc. Rev 2011, 40, 5084–5121. - PubMed
    1. Ding C-H; Hou X-L Catalytic asymmetric propargylation. Chem. Rev 2011, 111, 1914–1937. - PubMed
    1. For selected examples directed toward drug and natural product syntheses, see:

    2. Houze JB; Zhu L; Sun Y; Akerman M; Qiu W; Zhang AJ; Sharma R; Schmitt M; Wang Y; Liu J; Liu J; Medina JC; Reagan JD; Luo J; Tonn G; Zhang J; Lu JY-L; Chen M; Lopez E; Nguyen K; Yang L; Tang L; Tian H; Shuttleworth SJ; Lin DC-H AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg. Med. Chem. Lett 2012, 22, 1267–1270. - PubMed
    3. Zheng Y; Zhang L; Meggers E Catalytic enantioselective synthesis of key propargylic alcohol intermediates of the anti-HIV drug efavirenz. Org. Process Res. Dev 2018, 22, 103–107.
    4. Shemet A; Carriera EM Total Synthesis of (−)-Rhazinilam and Formal Synthesis of (+)-Eburenine and (+)-Aspidospermidine: Asymmetric Cu-Catalyzed Propargylic Substitution. Org. Lett 2017, 19, 5529–5532. - PubMed
    5. Jiang B; Xu M Highly Enantioselective Construction of Fused Pyrrolidine Systems That Contain a Quaternary Stereocenter: Concise Formal Synthesis of (+)-Conessine. Angew. Chem., Int. Ed 2004, 43, 2543–2546. - PubMed
    6. Fleming JJ; Du Bois A Synthesis of (+)-Saxitoxin. J. Am. Chem. Soc 2006, 128, 3926–3927. - PubMed
    7. Shair MD; Yoon TY; Mosny KK; Chou TC; Danishefsky SJ The Total Synthesis of Dynemicin A Leading to Development of a Fully Contained Bioreductively Activated Enediyne Prodrug. J. Am. Chem. Soc 1996, 118, 9509–9525.
    8. Baars H; Classen MJ; Aggarwal VK Synthesis of Alfaprostol and PGF2α Through 1,4-Addition of an Alkyne to an Enal Intermediate as the Key Step. Org. Lett 2017, 19, 6008–6011. - PubMed
    9. Taylor AM; Schreiber SL Enantioselective Addition of Terminal Alkynes to Isolated Isoquinoline Iminiums. Org. Lett 2006, 8, 143–146. - PubMed
    1. Reviews:

    2. Nishibayashi Y, Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles. Synthesis 2012, 44, 489–503.
    3. Zhang D-Y; Hu X-P, Recent Advances in Copper-Catalyzed Propargylic Substitution. Tetrahedron Lett. 2015, 56, 283–295.
    4. Recent developments:

    5. Nakajima K; Shibata M; Nishibayashi Y Copper-Catalyzed Enantioselective Propargylic Etherification of Propargylic Esters with Alcohols. J. Am. Chem. Soc 2015, 137, 2472–2475. - PubMed
    6. Pu X; Dang QD; Yang L; Zhang X; Niu D Doubly Stereoconvergent Construction of Vicinal All-Carbon Quaternary and Tertiary Stereocenters by Cu/Mg-Catalyzed Propargylic Substitution. Nat. Commun 2022, 13, 2457. - PMC - PubMed
    7. Li R-Z; Liu D-Q; Niu D Asymmetric O-Propargylation of Secondary Aliphatic Alcohols. Nat. Catal 2020, 3, 672–680.
    8. Ardolino MJ; Morken JP Construction of 1,5-Enynes by Stereospecific Pd-Catalyzed Allyl-Propargyl Cross-Couplings. J. Am. Chem. Soc 2012, 134, 8770–8773. - PMC - PubMed
    9. Ardolino MJ; Eno MS; Morken JP Stereocontrol in Palladium-Catalyzed Propargylic Substitutions: Kinetic Resolution to give Enantioenriched 1,5-Enynes and Propar-gyl Acetates. Adv. Synth. Catal 2013, 355, 3413–3419. - PMC - PubMed
    10. Oelke AJ; Sun J; Fu GC Nickel-Catalyzed Enantioselective Cross-Couplings of Racemic Secondary Electrophiles That Bear an Oxygen Leaving Group. J. Am. Chem. Soc 2012, 134, 2966–2969. - PMC - PubMed
    11. Guisán-Ceinos M; Martín-Heras V; Tortosa M Regio- and Stereospecific Copper-Catalyzed Substitution Reaction of Propargylic Ammonium Salts with Aryl Grignard Reagents. J. Am. Chem. Soc 2017, 139, 8448–8451. - PubMed
    12. Miyazaki Y; Zhou B; Tsuji H; Kawatsura M Nickel-Catalyzed Asymmetric Friedel-Crafts Propargylation of 3-Substituted Indoles with Propargylic Carbonates Bearing an Internal Alkyne Group. Org. Lett 2020, 22, 2049–2053. - PubMed
    13. Xu X; Peng L; Chang X; Guo C Ni/Chiral Sodium Carboxylate Dual Catalyzed Asymmetric O-Propargylation. J. Am. Chem. Soc 2021, 143, 21048–21055. - PubMed
    14. Chang X; Zhang J; Peng L; Guo C Collective Synthesis of Acetylenic Pharmaceuticals via Enantioselective Nickel/Lewis Acid-Catalyzed Propargylic Alkylation. Nature Commun. 2021, 12, 299. - PMC - PubMed

Publication types