Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023;25(6):789-798.
doi: 10.1080/15226514.2022.2109588. Epub 2022 Aug 17.

Green synthesis of copper oxide and manganese oxide nanoparticles from watermelon seed shell extract for enhanced photocatalytic reduction of methylene blue

Affiliations

Green synthesis of copper oxide and manganese oxide nanoparticles from watermelon seed shell extract for enhanced photocatalytic reduction of methylene blue

Arzu Ekinci et al. Int J Phytoremediation. 2023.

Abstract

In the current study, copper oxide (CuO) and manganese oxide (MnO) nanoparticles (NPs) were synthesized through a simple, cost-efficient, and green method using watermelon seed shell extract as a stabilizing and reducing agent. The synthesized CuO and MnO NPs were characterized by using scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet spectroscopy (UV). The particle sizes of CuO and MnO NPs were determined to be in the range of 15-97 and 6-51 nm, respectively, by TEM and XRD analysis. The photocatalytic performance of the CuO and MnO NPs used as catalysts were investigated for the photocatalytic reduction of methylene blue in an aqueous solution. In the photocatalytic reduction of methylene blue, sodium borohydride (NaBH4) was used as the reducing agent. The CuO and MnO NPs were capable to remove 96.58% (in 70 min) and 96.60% (in 140 min) of methylene blue from aqueous media, respectively. Besides, the kinetics of the photocatalytic reaction was investigated by a pseudo-first order model, and the reaction rate coefficient for methylene blue with CuO and MnO NPs were calculated as 0.0426 and 0.0235 min-1, respectively. The results demonstrated that the synthesized CuO and MnO NPs through the green method were promising catalysts to improve the photocatalytic reduction performance of methylene blue.

Keywords: Green synthesis; metal oxide; methylene blue; photocatalytic reduction.

PubMed Disclaimer

LinkOut - more resources