An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array
- PMID: 35977018
- PMCID: PMC9385141
- DOI: 10.1126/sciadv.abp8075
An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array
Abstract
Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring.
Figures





Similar articles
-
Flexible Electronics toward Wearable Sensing.Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15. Acc Chem Res. 2019. PMID: 30767497 Review.
-
Solution-processed light-induced multilevel non-volatile wearable memory device based on CsPb2Br5 perovskite.Dalton Trans. 2022 Mar 8;51(10):3864-3874. doi: 10.1039/d1dt03699h. Dalton Trans. 2022. PMID: 35171172
-
Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.Acc Chem Res. 2019 Jan 15;52(1):91-99. doi: 10.1021/acs.accounts.8b00508. Epub 2018 Dec 26. Acc Chem Res. 2019. PMID: 30586283 Review.
-
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.Nature. 2008 Jul 24;454(7203):495-500. doi: 10.1038/nature07110. Nature. 2008. PMID: 18650920
-
Organic flash memory on various flexible substrates for foldable and disposable electronics.Nat Commun. 2017 Sep 28;8(1):725. doi: 10.1038/s41467-017-00805-z. Nat Commun. 2017. PMID: 28959055 Free PMC article.
Cited by
-
Transforming Healthcare: Intelligent Wearable Sensors Empowered by Smart Materials and Artificial Intelligence.Adv Mater. 2025 May;37(21):e2500412. doi: 10.1002/adma.202500412. Epub 2025 Apr 1. Adv Mater. 2025. PMID: 40167502 Free PMC article. Review.
-
Developments and Future Directions in Stretchable Display Technology: Materials, Architectures, and Applications.Micromachines (Basel). 2025 Jun 30;16(7):772. doi: 10.3390/mi16070772. Micromachines (Basel). 2025. PMID: 40731684 Free PMC article. Review.
-
Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures.Materials (Basel). 2024 Jun 19;17(12):2999. doi: 10.3390/ma17122999. Materials (Basel). 2024. PMID: 38930367 Free PMC article.
-
Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid.Micromachines (Basel). 2023 Jul 20;14(7):1452. doi: 10.3390/mi14071452. Micromachines (Basel). 2023. PMID: 37512763 Free PMC article. Review.
-
Sub-180-nanometer-thick ultraconformable high-performance carbon nanotube-based dual-gate transistors and differential amplifiers.Sci Adv. 2024 Sep 6;10(36):eadq6022. doi: 10.1126/sciadv.adq6022. Epub 2024 Sep 6. Sci Adv. 2024. PMID: 39241060 Free PMC article.
References
-
- Kim D.-H., Lu N., Ma R., Kim Y.-S., Kim R.-H., Wang S., Wu J., Won S. M., Tao H., Islam A., Yu K. J., Kim T.-I., Chowdhury R., Ying M., Xu L., Li M., Chung H.-J., Keum H., McCormick M., Liu P., Zhang Y.-W., Omenetto F. G., Huang Y., Coleman T., Rogers J. A., Epidermal electronics. Science 333, 838–843 (2011). - PubMed
-
- Xiang L., Zeng X., Xia F., Jin W., Liu Y., Hu Y., Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 14, 6449–6469 (2020). - PubMed
-
- Ray T. R., Choi J., Bandodkar A. J., Krishnan S., Gutruf P., Tian L., Ghaffari R., Rogers J. A., Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 119, 5461–5533 (2019). - PubMed
-
- Liu Y., Pharr M., Salvatore G. A., Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017). - PubMed
-
- Lim H.-R., Kim H. S., Qazi R., Kwon Y.-T., Jeong J.-W., Yeo W.-H., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020). - PubMed
LinkOut - more resources
Full Text Sources