Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;13(6):2791-2806.
doi: 10.1002/jcsm.13064. Epub 2022 Aug 17.

Biomarkers associated with lower limb muscle function in individuals with sarcopenia: a systematic review

Affiliations

Biomarkers associated with lower limb muscle function in individuals with sarcopenia: a systematic review

Rebecca Louise Jones et al. J Cachexia Sarcopenia Muscle. 2022 Dec.

Abstract

Lower limb muscle dysfunction is a key driver for impaired physical capacity and frailty status, both characteristics of sarcopenia. Sarcopenia is the key pathway between frailty and disability. Identifying biological markers for early diagnosis, treatment, and prevention may be key to early intervention and prevention of disability particularly mobility issues. To identify biological markers associated with lower limb muscle (dys)function in adults with sarcopenia, a systematic literature search was conducted in AMED, CINAHL, Cochrane Library, EMBASE, Medline, PubMed, Scopus, SPORTDiscus, and Web of Science databases from inception to 17 November 2021. Title, abstract, and full-text screening, data extraction, and methodological quality assessment were performed by two reviewers independently and verified by a third reviewer. Depending on available data, associations are reported as either Pearson's correlations, regression R2 or partial R2 , P value, and sample size (n). Twenty eligible studies including 3306 participants were included (females: 79%, males: 15%, unreported: 6%; mean age ranged from 53 to 92 years) with 36% in a distinct sarcopenic subgroup (females: 73%, males: 19%, unreported: 8%; mean age range 55-92 years). A total of 119 biomarkers were reported, categorized into: genetic and microRNAs (n = 64), oxidative stress (n = 10), energy metabolism (n = 18), inflammation (n = 7), enzyme (n = 4), hormone (n = 7), bone (n = 3), vitamin (n = 2), and cytokine (n = 4) markers) and seven lower limb muscle measures predominately focused on strength. Seven studies reported associations between lower limb muscle measures including (e.g. power, force, and torque) and biomarkers. In individuals with sarcopenia, muscle strength was positively associated with free testosterone (r = 0.40, P = 0.01; n = 46). In analysis with combined sarcopenic and non-sarcopenic individuals, muscle strength was positively associated with combined genetic and methylation score (partial R2 = 0.122, P = 0.03; n = 48) and negatively associated with sarcopenia-driven methylation score (partial R2 = 0.401, P < 0.01; n = 48). Biomarkers related to genetics (R2 = 0.001-0.014, partial R2 = 0.013-0.122, P > 0.05; n = 48), oxidative stress (r = 0.061, P > 0.05; n ≥ 77), hormone (r = 0.01, ρ = 0.052 p > 0.05, n ≥ 46) and combined protein, oxidative stress, muscle performance, and hormones (R2 = 22.0, P > 0.05; n ≥ 82) did not report significant associations with lower limb muscle strength. Several biomarkers demonstrated associations with lower limb muscle dysfunction. The current literature remains difficult to draw clear conclusions on the relationship between biomarkers and lower limb muscle dysfunction in adults with sarcopenia. Heterogeneity of biomarkers and lower limb muscle function precluded direct comparison. Use of international classification of sarcopenia and a set of core standardized outcome measures should be adopted to aid future investigation and recommendations to be made.

Keywords: Cytokines; Inflammation; Lower limb; Muscle mass; Muscle strength.

PubMed Disclaimer

Conflict of interest statement

Rebecca Louise Jones, Lorna Paul, Martijn Steultjens, and Stephanie Louise Smith declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
Flow diagram of the study selection process for eligible studies in the systematic review.
Figure 2
Figure 2
Sankey diagram of lower limb muscle measures and biomarkers (based on the primary role).

Similar articles

Cited by

References

    1. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 2014;11:177–180. - PMC - PubMed
    1. Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. Health outcomes of sarcopenia: A systematic review and meta‐analysis. PLoS One 2017;12:e0169548. - PMC - PubMed
    1. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta‐Analysis. J Am Med Dir Assoc 2016;17:1164.e15. - PubMed
    1. Cruz‐Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43:48–759. - PMC - PubMed
    1. Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta‐analysis. J Cachexia Sarcopenia Muscle Wiley Blackwell 2019;10:485–500. - PMC - PubMed

Publication types