Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 17;22(1):695.
doi: 10.1186/s12879-022-07678-8.

Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017-2018)

Affiliations

Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017-2018)

Sirigade Ruekit et al. BMC Infect Dis. .

Abstract

Background: ESKAPEE pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli are multi-drug resistant (MDR) bacteria that present increasing treatment challenges for healthcare institutions and public health worldwide.

Methods: 431 MDR ESKAPEE pathogens were collected from Queen Sirikit Naval Hospital, Chonburi, Thailand between 2017 and 2018. Species identification and antimicrobial resistance (AMR) phenotype were determined following CLSI and EUCAST guidelines on the BD Phoenix System. Molecular identification of antibiotic resistant genes was performed by polymerase chain reaction (PCR), real-time PCR assays, and whole genome sequencing (WGS).

Results: Of the 431 MDR isolates collected, 1.2% were E. faecium, 5.8% were S. aureus, 23.7% were K. pneumoniae, 22.5% were A. baumannii, 4.6% were P. aeruginosa, 0.9% were Enterobacter spp., and 41.3% were E. coli. Of the 401 Gram-negative MDR isolates, 51% were carbapenem resistant, 45% were ESBL producers only, 2% were colistin resistance and ESBLs producers (2%), and 2% were non-ESBLs producers. The most prevalent carbapenemase genes were blaOXA-23 (23%), which was only identified in A. baumannii, followed by blaNDM (17%), and blaOXA-48-like (13%). Beta-lactamase genes detected included blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, blaCMY, blaPER and blaVEB. Seven E. coli and K. pneumoniae isolates showed resistance to colistin and carried mcr-1 or mcr-3, with 2 E. coli strains carrying both genes. Among 30 Gram-positive MDR ESKAPEE, all VRE isolates carried the vanA gene (100%) and 84% S. aureus isolates carried the mecA gene.

Conclusions: This report highlights the prevalence of AMR among clinical ESKAPEE pathogens in eastern Thailand. E. coli was the most common MDR pathogen collected, followed by K. pneumoniae, and A. baumannii. Carbapenem-resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases (ESBLs) producers were the most common resistance profiles. The co-occurrence of mcr-1 and mcr-3 in 2 E. coli strains, which did not affect the level of colistin resistance, is also reported. The participation of global stakeholders and surveillance of MDR remain essential for the control and management of MDR ESKAPEE pathogens.

Keywords: CRE; ESBL; ESKAPEE; MDR; Thailand; mcr.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

References

    1. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067. - DOI - PMC - PubMed
    1. Mendes RE, Mendoza M, Banga Singh KK, Castanheira M, Bell JM, Turnidge JD, Lin SS, Jones RN. Regional resistance surveillance program results for 12 Asia-Pacific nations (2011) Antimicrob Agents Chemother. 2013;57(11):5721–5726. doi: 10.1128/AAC.01121-13. - DOI - PMC - PubMed
    1. Rice LB. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc. 2012;87(2):198–208. doi: 10.1016/j.mayocp.2011.12.003. - DOI - PMC - PubMed
    1. Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014;78:3–13. doi: 10.1016/j.addr.2014.08.003. - DOI - PubMed
    1. Escobar IE, White A, Kim W, Mylonakis E. New antimicrobial bioactivity against multidrug-resistant gram-positive bacteria of kinase inhibitor IMD0354. Antibiotics (Basel, Switzerland) 2020;9(10):665. - PMC - PubMed

MeSH terms

Grants and funding

LinkOut - more resources