Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun:9:161-200.
doi: 10.3114/fuse.2022.09.08. Epub 2022 Jun 23.

Fusarium and allied fusarioid taxa (FUSA). 1

Affiliations

Fusarium and allied fusarioid taxa (FUSA). 1

P W Crous et al. Fungal Syst Evol. 2022 Jun.

Abstract

Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here. Citation: Crous PW, Sandoval-Denis M, Costa MM, Groenewald JZ, van Iperen AL, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem AM, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra JDP, Bhunjun CS, Câmara MPS, Chaverri P, Vieira WAS, Decock CA, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta VK, Guarnaccia V, Hill R, Hirooka Y, Hyde KD, Jayawardena RS, Jeewon R, Jurjević Ž, Korsten L, Lamprecht SC, Lombard L, Maharachchikumbura SSN, Polizzi G, Rajeshkumar KC, Salgado-Salazar C, Shang Q-J, Shivas RG, Summerbell RC, Sun GY, Swart WJ, Tan YP, Vizzini A, Xia JW, Zare R, González CD, Iturriaga T, Savary O, Coton M, Coton E, Jany J-L, Liu C, Zeng Z-Q, Zhuang W-Y, Yu Z-H, Thines M (2022). Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Systematics and Evolution 9: 161-200. doi: 10.3114/fuse.2022.09.08.

Keywords: Longinectria; Nectriaceae; Neocosmospora; multi-gene phylogeny; new taxa; systematics; typification.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: The authors declare that there is no conflict of interest.

Figures

Fig. 1.
Fig. 1.
IQ-TREE phylogeny inferred from the combined rpb1, rpb2 and tef1 sequences of currently accepted species belonging to seven species complexes (SC) of Fusarium i.e., F. aywerte (FASC), F. buharicum (FBSC), F. burgessii (FBURSC), F. camptoceras (FCAMSC), F. chlamydosporum (FCSC), F. citricola (FCCSC), and F. concolor (FCOSC). Numbers at the nodes correspond to IQ-TREE bootstrap values ≥ 95 % followed by Bayesian posterior probabilities ≥ 0.95, and IQ-TREE gene concordance factors. The tree is rooted to F. lateritium NRRL 13622 and F. stilboides NRRL 20429 (FLSC). The scale bar indicates the expected number of nucleotide substitutions per site. Species complexes are indicated on the right and highlighted with coloured blocks. Ex-epitype, ex-neotype, and ex-type strains are indicated with ET, NT, and T, respectively.
Fig. 2.
Fig. 2.
IQ-TREE phylogeny inferred from the combined acl1, ITS, LSU, rpb2 and tub2 sequences of Fusicolla spp. Numbers at the nodes correspond to IQ-TREE bootstrap values ≥ 95 % followed by Bayesian posterior probabilities ≥ 0.95, and IQ-TREE gene concordance factors. The tree is rooted to Macroconia leptosphaeriae CBS 10001 and Scolecofusarium ciliatum CBS 148938. The scale bar indicates the expected number of nucleotide substitutions per site. Novel taxa are indicated in bold. Ex-epitype and ex-type strains are indicated with ET and T, respectively.
Fig. 3.
Fig. 3.
IQ-TREE phylogeny inferred from the combined ITS, rpb1, rpb2 and tef1 sequences of representative Neocosmospora spp. Numbers at the nodes correspond to IQ-TREE bootstrap values ≥ 95 % followed by Bayesian posterior probabilities ≥ 0.95, and IQ-TREE gene concordance factors. The tree is rooted to Geejayessia atrofusca NRRL 22316 and G. cicatricum CBS 125552. The scale bar indicates the expected number of nucleotide substitutions per site. New combinations and species are indicated in bold. Numbers between parenthesis indicate former phylogenetic species nomenclature. The ‘Ambrosia clade’ of Neocosmospora is indicated on the right. Ex-epitype and ex-type strains are indicated with ET and T, respectively.
Fig. 4.
Fig. 4.
Fusarium aywerte (CBS 395.96). A. Sporodochium on CLA. B, C. Sporodochia on SNA. D–G, J. Aerial conidiophores with monophialides. H, I. Sporodochial conidiophores. K, L. Macroconidia. Scale bars = 10 μm.
Fig. 5.
Fig. 5.
Fusarium tjaynera (NRRL 66246). A, B. Sporodochia on CLA. C, D. Aerial conidiophores with monophialides giving rise to microconidia. E. Microconidia. F, G. Aerial conidiophores with monophialides giving rise to macroconidia. H. Sporodochial conidiophores. I–K. Macroconidia. Scale bars = 10 μm.
Fig. 6.
Fig. 6.
Fusarium sublunatum (CBS 189.34). A, B. Sporodochia on CLA. C–F. Sporodochial conidiophores. G. Chlamydospores. H. Macroconidia. Scale bars = 10 μm.
Fig. 7.
Fig. 7.
Fusarium algeriense (CBS 142638). A. Sporodochium on CLA. B–D. Aerial conidiophores with monophialides. E. Microconidia. F, G. Chlamydospores. H–K. Sporodochial conidiophores. L. Macroconidia. Scale bars = 10 μm.
Fig. 8.
Fig. 8.
Fusarium beomiforme (CBS 100160). A, B. Sporodochia on SNA. C–E. Microconidia. F, G. Chlamydospores developing in macroconidia. H–L. Sporodochial conidiophores. M. Macroconidia. Scale bars = 10 μm.
Fig. 9.
Fig. 9.
Fusarium burgessii (CBS 125537). A. Sporodochium on CLA. B. Aerial conidiophores with monophialides giving rise to micro- and macroconidia. C–F. Microconidia. G–J. Sporodochial conidiophores. K. Macroconidia. Scale bars = 10 μm.
Fig. 10.
Fig. 10.
Fusarium camptoceras (CBS 193.65). A. Aerial conidiophores with monophialides. B, C. Chlamydospores. D, E. Macroconidia. Scale bars = 10 μm.
Fig. 11.
Fig. 11.
Fusarium celtidicola (MFLUCC 16-0526). A. Sporodochium on CLA. B. Aerial conidiophore. C–I. Sporodochial conidiophores with monophialides. J. Chlamydospore. K. Macroconidia. Scale bars = 10 μm.
Fig. 12.
Fig. 12.
Fusarium celtidicola (MFLUCC 16-0526). A. Perithecial ascomata on host surface. B, C. Vertical section through perithecia. D–G. Hamathecial catenophyses, and asci. H. Germinating ascospore. (F, G in Melzer’s reagent). Scale bars: A = 100 μm, B, C = 30 μm, D–H = 10 μm (Photos from Shang et al. 2018).
Fig. 13.
Fig. 13.
Fusarium austroafricanum (CBS 120990). A, B. Sporodochia on CLA. C–F. Aerial conidiophores with polyphialides giving rise to microconidia. G. Microconidia. H. Chlamydospore. I–L. Sporodochial conidiophores giving rise to macroconidia. M. Macroconidia. Scale bars = 10 μm.
Fig. 14.
Fig. 14.
Fusicolla elongata (MUCL 58143 ex-type). A–C. Colony surface on PDA, SNA and OA, respectively. D–H. Conidiophores and conidiogenous cells. I. Conidia. Scale bars: E = 5 μm; all others = 10 μm.
Fig. 15.
Fig. 15.
Neocosmospora geoasparagicola (CBS 148937 ex-type). A–D. Sporodochia formed on the surface of carnation leaves. E–H. Aerial conidiophores and conidiogenous cells. I–K. Sporodochial conidiophores and conidiogenous cells. L. Conidia. Scale bars: B–D = 20 μm; J = 5 μm; all others = 10 μm.

References

    1. Adamčík S, Cai L, Chakraborty D, et al. (2015). Fungal Biodiversity Profiles 1–10. Cryptogamie, Mycologie 36: 121–166.
    1. Ahmad A, Akram W, Shahzadi I, et al. (2020). First report of Fusarium nelsonii causing early-stage fruit blight of cucumber in Guangzhou, China. Plant Disease 104: 1542.
    1. Aoki T, Liyanage PNH, Konkol JL, et al. (2021). Three novel Ambrosia Fusarium Clade species producing multiseptate “dolphin-shaped” conidia, and an augmented description of Fusarium kuroshium. Mycologia 113: 1089–1109. - PubMed
    1. Aoki T, O’Donnell K, Geiser D. (2014). Systematics of key phytopathogenic Fusarium species: current status and future challenges. Journal of General Plant Pathology 80: 189–201.
    1. Balmas V, Migheli Q, Scherm B, et al. (2010). Multilocus phylogenetics show high levels of endemic fusaria inhabiting Sardinian soils (Tyrrhenian Islands). Mycologia 102: 803–812. - PubMed

LinkOut - more resources