[Artificial intelligence in orthopaedic and trauma surgery imaging]
- PMID: 35980460
- DOI: 10.1007/s00132-022-04293-y
[Artificial intelligence in orthopaedic and trauma surgery imaging]
Abstract
Artificial intelligence (AI) is playing an increasing role in radiological imaging in orthopaedics and trauma surgery. The algorithms available to date are predominantly used in the detection of (occult) fractures and in length and angle measurements in conventional X‑ray images. However, current AI solutions also enable the analysis and pattern recognition of CT datasets, e.g. in the detection of rib or vertebral body fractures. A special application is EOS™ (ATEC Spine Group, Paris, France), which enables a 3‑D simulation of the axial skeleton and semi-automatic length and angle calculations based on a digital 2‑D X‑ray image. In this paper, the current spectrum of AI applications for orthopaedics and trauma surgery is presented and discussed.
Künstliche Intelligenz (KI) spielt eine zunehmende Rolle für die radiologische Bildgebung in der Orthopädie und Unfallchirurgie. Die bislang verfügbaren Algorithmen finden überwiegend in der Detektion von (okkulten) Frakturen und in der Längen- und Winkelbestimmung bei konventionellen Röntgenaufnahmen Anwendung. Aktuelle KI-Lösungen ermöglichen aber auch die Analyse und Mustererkennung von CT-Datensätzen, zum Beispiel bei der Detektion von Rippen- oder Wirbelkörperfrakturen. Eine besondere Anwendung ist das EOS™ (ATEC Spine Group, Paris, Frankreich), dass auf der Basis einer digitalen 2‑D-Röntgenaufnahme eine 3‑D-Simulation des Achsenskeletts und semiautomatische Längen- und Winkelberechnungen ermöglicht. In der vorliegenden Arbeit wird das derzeitige Spektrum der KI-Anwendungen für die Orthopädie und Unfallchirurgie vorgestellt und diskutiert.
Keywords: Automated pattern recognition; Bone fractures; Computational intelligence; Emergency medicine; Machine learning.
© 2022. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Similar articles
-
What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.Clin Orthop Relat Res. 2019 Nov;477(11):2482-2491. doi: 10.1097/CORR.0000000000000848. Clin Orthop Relat Res. 2019. PMID: 31283727 Free PMC article.
-
Artificial intelligence and computer vision in orthopaedic trauma : the why, what, and how.Bone Joint J. 2022 Aug;104-B(8):911-914. doi: 10.1302/0301-620X.104B8.BJJ-2022-0119.R1. Bone Joint J. 2022. PMID: 35909378
-
Bone segmentation and fracture detection in ultrasound using 3D local phase features.Med Image Comput Comput Assist Interv. 2008;11(Pt 1):287-95. doi: 10.1007/978-3-540-85988-8_35. Med Image Comput Comput Assist Interv. 2008. PMID: 18979759
-
A comprehensive exploration of artificial intelligence in orthopaedics within lower-middle-income countries: a narrative review.J Pak Med Assoc. 2024 Apr;74(4 (Supple-4)):S90-S96. doi: 10.47391/JPMA.AKU-9S-14. J Pak Med Assoc. 2024. PMID: 38712415 Review.
-
Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review.JBJS Rev. 2024 Mar 11;12(3). doi: 10.2106/JBJS.RVW.23.00232. eCollection 2024 Mar 1. JBJS Rev. 2024. PMID: 38466797 Review.
Cited by
-
Artificial Intelligence, the Digital Surgeon: Unravelling Its Emerging Footprint in Healthcare - The Narrative Review.J Multidiscip Healthc. 2024 Aug 15;17:4011-4022. doi: 10.2147/JMDH.S482757. eCollection 2024. J Multidiscip Healthc. 2024. PMID: 39165254 Free PMC article. Review.
-
The Changing Environment in Postgraduate Education in Orthopedic Surgery and Neurosurgery and Its Impact on Technology-Driven Targeted Interventional and Surgical Pain Management: Perspectives from Europe, Latin America, Asia, and The United States.J Pers Med. 2023 May 18;13(5):852. doi: 10.3390/jpm13050852. J Pers Med. 2023. PMID: 37241022 Free PMC article.
-
Diagnostic Value of Hounsfield Units for Osteoporotic Thoracolumbar Vertebral Non-Compression Fractures in Elderly Patients with Low-Energy Injuries.Int J Gen Med. 2024 Jul 23;17:3221-3229. doi: 10.2147/IJGM.S471770. eCollection 2024. Int J Gen Med. 2024. PMID: 39070224 Free PMC article.
References
Literatur
-
- McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–133 - DOI
-
- Tjardes T, Heller RA, Pförringer D, Lohmann R, Back DA (2020) Künstliche Intelligenz in der Orthopädie und Unfallchirurgie. Chirurg 91:201–205 - DOI
-
- Haubold J (2020) Künstliche Intelligenz in der Radiologie. Radiologe 60:64–69 - DOI
-
- Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024 - DOI
-
- Sheth SA, Giancardo L, Colasurdo M, Srinivasan VM, Niktabe A, Kan P (2020) Machine learning and acute stroke imaging. J Neurointerv Surg. https://doi.org/10.1136/neurintsurg-2021-018142 - DOI - PubMed - PMC
Publication types
MeSH terms
LinkOut - more resources
Medical