Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 29;61(34):13644-13656.
doi: 10.1021/acs.inorgchem.2c02689. Epub 2022 Aug 18.

A Mesoionic Carbene-Pyridine Bidentate Ligand That Improves Stability in Electrocatalytic CO2 Reduction by a Molecular Manganese Catalyst

Affiliations

A Mesoionic Carbene-Pyridine Bidentate Ligand That Improves Stability in Electrocatalytic CO2 Reduction by a Molecular Manganese Catalyst

Thorsten Scherpf et al. Inorg Chem. .

Abstract

Tricarbonyl Group 7 complexes have a longstanding history as efficacious CO2 electroreduction catalysts. Typically, these complexes feature an auxiliary 2,2'-bipyridine ligand that assists in redox steps by delocalizing the electron density into the ligand orbitals. While this feature lends to an accessible redox potential for CO2 electroreduction, it also presents challenges for electrocatalysis with Mn because the electron density is removed from metal-ligand bonding orbitals. The results presented here thus introduce a mesoionic carbene (MIC) as a potent ligand platform to promote Mn-based electrocatalysis. The strong σ donation of the N,C-bidentate MIC is shown to help centralize the electron density on the Mn center while also maintaining relevant redox potentials for CO2 electroreduction. Mechanistic investigation supports catalytic turnover at two operative potentials separated by 400 mV. In the low operating potential regime at -1.54 V, Mn(0) species catalyze CO2 to CO and CO32-, which has a maximum rate of 7 ± 5 s-1 and is stable for up to 30.7 h. At higher operating potential at -1.94 V, "Mn(-1)" catalyzes CO2 to CO and H2O with faster turnovers of 200 ± 100 s-1, with the trade-off being less stability at 6.7 h. The relative stabilities of Mn complexes bearing MIC and 4,4'-di-tert-butyl-2,2'-bipyridine were compared by evaluation under the same electrolysis conditions and therefore elucidated that the MIC promotes longevity for CO evolution throughout a 5 h period.

PubMed Disclaimer

LinkOut - more resources