Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 15:931:175213.
doi: 10.1016/j.ejphar.2022.175213. Epub 2022 Aug 15.

Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: The modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories

Affiliations

Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: The modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories

Sarah A Abd El-Aal et al. Eur J Pharmacol. .

Abstract

Morin is a bioactive flavonoid with prominent neuroprotective potentials, however, its impact on epilepsy-provoked cognitive dysregulations has not been revealed. Hence, the present investigation aims to divulge the potential anticonvulsant/neuroprotective effects of morin in rats using a pentylenetetrazole (PTZ)-induced kindling model with an emphasis on the possible signaling trajectories involved. Kindling was induced using a sub-convulsive dose of PTZ (35 mg/kg, i.p.), once every other day for 25 days (12 injections). The expression of targeted biomarkers and molecular signals were examined in hippocampal tissues by ELISA, Western blotting, immunohistochemistry, and histopathology. Contrary to PTZ effects, administration of morin (10 mg/kg, i.p., from day 15 of PTZ injection to the end of the experiment) significantly reduced the severity of seizures coupled with a delay in kindling acquisition. It also preserved hippocampal neurons, and diminished astrogliosis to counteract cognitive deficits, exhibited by the enhanced performance in MWM and PA tests. These favorable impacts of morin were mediated via the abrogation of the PTZ-induced necroptotic changes and mitochondrial fragmentation proven by the suppression of p-RIPK-1/p-RIPK-3/p-MLKL and PGAM5/Drp-1 cues alongside the enhancement of caspase-8. Besides, morin inhibited the inflammatory cascade documented by the attenuation of the pro-convulsant receptor/cytokines TNFR-1, TNF-α, I L-1β, and IL-6 and the marked reduction of hippocampal IL-6/p-JAK2/p-STAT3/GFAP cue. In tandem, morin signified its anti-oxidant capacity by lowering the hippocampal contents of MDA, NOX-1, and Keap-1 with the restoration of the impaired Nrf-2/HO-1 pathway. Together, these versatile neuro-modulatory effects highlight the promising role of morin in the management of epilepsy.

Keywords: Cognitive deficits; Morin; Necroptosis; Neuro-inflammation; PTZ.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no conflicts of interest.