Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;7(9):1490-1500.
doi: 10.1038/s41564-022-01191-z. Epub 2022 Aug 18.

Genomic epidemiology of the SARS-CoV-2 epidemic in Brazil

Marta Giovanetti #  1   2   3 Svetoslav Nanev Slavov #  4   5 Vagner Fonseca #  2   6   7   8 Eduan Wilkinson #  7   8 Houriiyah Tegally #  7   8 José Salvatore Leister Patané #  5 Vincent Louis Viala  5 Emmanuel James San  7   8 Evandra Strazza Rodrigues  4 Elaine Vieira Santos  4 Flavia Aburjaile  2 Joilson Xavier  2   9 Hegger Fritsch  2   9 Talita Emile Ribeiro Adelino  2   9 Felicidade Pereira  10 Arabela Leal  10 Felipe Campos de Melo Iani  9 Glauco de Carvalho Pereira  9 Cynthia Vazquez  11 Gladys Mercedes Estigarribia Sanabria  11   12   13 Elaine Cristina de Oliveira  14 Luiz Demarchi  15 Julio Croda  16 Rafael Dos Santos Bezerra  4 Loyze Paola Oliveira de Lima  5 Antonio Jorge Martins  5 Claudia Renata Dos Santos Barros  5 Elaine Cristina Marqueze  5 Jardelina de Souza Todao Bernardino  5 Debora Botequio Moretti  5 Ricardo Augusto Brassaloti  17 Raquel de Lello Rocha Campos Cassano  17 Pilar Drummond Sampaio Corrêa Mariani  18 João Paulo Kitajima  19 Bibiana Santos  19 Rodrigo Proto-Siqueira  20 Vlademir Vicente Cantarelli  21 Stephane Tosta  2   10 Vanessa Brandão Nardy  10 Luciana Reboredo de Oliveira da Silva  10 Marcela Kelly Astete Gómez  10 Jaqueline Gomes Lima  10 Adriana Aparecida Ribeiro  9 Natália Rocha Guimarães  9 Luiz Takao Watanabe  14 Luana Barbosa Da Silva  14 Raquel da Silva Ferreira  14 Mara Patricia F da Penha  22 María José Ortega  11 Andrea Gómez de la Fuente  11 Shirley Villalba  11 Juan Torales  11 María Liz Gamarra  11 Carolina Aquino  11 Gloria Patricia Martínez Figueredo  11   12   13 Wellington Santos Fava  16 Ana Rita C Motta-Castro  16 James Venturini  16 Sandra Maria do Vale Leone de Oliveira  16 Crhistinne Cavalheiro Maymone Gonçalves  23 Maria do Carmo Debur Rossa  24 Guilherme Nardi Becker  24 Mayra Presibella Giacomini  24 Nelson Quallio Marques  24 Irina Nastassja Riediger  24 Sonia Raboni  25 Gabriela Mattoso  26 Allan D Cataneo  26 Camila Zanluca  26 Claudia N Duarte Dos Santos  26 Patricia Akemi Assato  27 Felipe Allan da Silva da Costa  27 Mirele Daiana Poleti  28 Jessika Cristina Chagas Lesbon  28 Elisangela Chicaroni Mattos  28 Cecilia Artico Banho  29 Lívia Sacchetto  29 Marília Mazzi Moraes  29 Rejane Maria Tommasini Grotto  27   30 Jayme A Souza-Neto  27 Maurício Lacerda Nogueira  29 Heidge Fukumasu  28 Luiz Lehmann Coutinho  17 Rodrigo Tocantins Calado  4 Raul Machado Neto  5 Ana Maria Bispo de Filippis  1 Rivaldo Venancio da Cunha  31 Carla Freitas  32 Cassio Roberto Leonel Peterka  33 Cássia de Fátima Rangel Fernandes  34 Wildo Navegantes  6 Rodrigo Fabiano do Carmo Said  6 Carlos F Campelo de A E Melo  6 Maria Almiron  6 José Lourenço  35   36 Tulio de Oliveira  8   9   37   38 Edward C Holmes  39 Ricardo Haddad  5 Sandra Coccuzzo Sampaio  40 Maria Carolina Elias  41 Simone Kashima  42 Luiz Carlos Junior de Alcantara  43   44 Dimas Tadeu Covas  45   46
Affiliations

Genomic epidemiology of the SARS-CoV-2 epidemic in Brazil

Marta Giovanetti et al. Nat Microbiol. 2022 Sep.

Abstract

The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Key events after the first confirmed SARS-CoV-2 infection in Brazil.
a, Timeline of SARS-CoV-2 key events in Brazil. b, Epidemic curve showing the progression of reported daily viral infection numbers in Brazil from the beginning of the epidemic (grey) and deaths (red) in the same period, with restriction phases indicated by the horizontal bar at the bottom. c, Map of cumulative SARS-CoV-2 cases per 100,000 inhabitants in Brazil up to June 2021.
Fig. 2
Fig. 2. Phylogenetic analysis and SARS-CoV-2 lineage dynamics in Brazil.
a, Map of Brazil with the number of sequences in GISAID as of 30 June 2021. The map is coloured according to geographical macro region: North (red), Northeast (green), Southeast (purple), Midwest (light blue) and South (light orange). AC, Acre; AL, Alagoas; AP, Amapá; AM, Amazonas; BA, Bahia; CE, Ceará; DF, Distrito Federal; ES, Espírito Santo; GO, Goiás; MA, Maranhão; MT, Mato Grosso; MS, Mato Grosso do Sul; MG, Minas Gerais; PA, Pará; PB, Paraíba; PR, Paraná; PE, Pernambuco; PI, Piauí; RR, Roraima; RO, Rondônia; RJ, Rio de Janeiro; RN, Rio Grande do Norte; RS, Rio Grande do Sul; SC, Santa Catarina; SP, São Paulo; SE Sergipe; TO, Tocantins. b, Temporal sampling of sequences in Brazilian states through time with VOCs highlighted and annotated according to their PANGO lineage assignment. c, Time-resolved maximum-likelihood phylogeny containing high-quality near-full genome sequences from Brazil (n = 3,866) obtained from this study, analysed against a backdrop of global reference sequences (n = 25,288). VUMs and VOCs are highlighted on the phylogeny. d, Sources of viral introductions into Brazil characterized as external introductions from the rest of the world. e, Sources of viral exchanges (imports and exports) into and out of Brazil. f, Number of viral exchanges within Brazilian regions by counting the state changes from the root to the tips of the phylogeny in c.
Fig. 3
Fig. 3. Fully annotated Brazilian SARS-CoV-2 time tree.
Time-resolved maximum-likelihood phylogeny containing 17,135 high-quality Brazilian SARS-CoV-2 near-full-genome sequences (n = 3,866 generated in this study) analysed against a backdrop of global reference sequences. VUMs and VOCs are highlighted.
Fig. 4
Fig. 4. Spatiotemporal spread of VOCs and VUMs in Brazil.
a, Phylogeographic reconstruction of the spread of the Gamma VOC in Brazil. Circles represent nodes of the maximum clade credibility phylogeny and are coloured according to their inferred time of occurrence. Shaded areas represent the 80% highest posterior density interval and depict the uncertainty of the phylogeographic estimates for each node. Solid curved lines denote the links between nodes and the directionality of movement. Differences in population density are shown on a dark-white scale. b, Phylogeographic reconstruction of the spread of the Zeta VUM across Brazil. Circles represent nodes of the maximum clade credibility phylogeny and are coloured according to their inferred time of occurrence. Shaded areas represent the 80% highest posterior density interval and depict the uncertainty of the phylogeographic estimates for each node. Solid curved lines denote the links between nodes and the directionality of movement. Differences in population density are shown on a dark-white scale. c, Number of exchanges of the Gamma variant between Brazilian regions (N, North; NE, Northeast; MD, Midwest; SE, Southeast; S, South). d, Number of exchanges of the Zeta variant between Brazilian regions. e, Sources of viral export of the VOC and VUM from Brazil to the rest of the world.
Fig. 5
Fig. 5. The SARS-CoV-2 epidemic in Paraguay.
a, Epidemic curve showing the progression of reported viral infection numbers in Paraguay from the beginning of the epidemic (grey) and deaths (red) in the same period. b, Progressive distribution of the top 20 PANGO lineages in Paraguay over time. c, Time-resolved maximum-likelihood tree containing high-quality near-complete genome sequences from Paraguay (n = 63) obtained in this study, analysed against a backdrop of global reference sequences. VUMs and VOCs are highlighted on the phylogeny. Genome sequences from Paraguay obtained in this study are highlighted with red borders.
Fig. 6
Fig. 6
Number of total cases plotted against the number of sequences available for each Brazilian state/region.

Update of

  • Genomic epidemiology reveals the impact of national and international restrictions measures on the SARS-CoV-2 epidemic in Brazil.
    Giovanetti M, Slavov SN, Fonseca V, Wilkinson E, Tegally H, Patané JSL, Viala VL, San JE, Rodrigues ES, Santos EV, Aburjaile F, Xavier J, Fritsch H, Adelino TER, Pereira F, Leal A, de Melo Iani FC, de Carvalho Pereira G, Vazquez C, Mercedes Estigarribia Sanabria G, de Oliveira EC, Demarchi L, Croda J, Dos Santos Bezerra R, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, de Souza Todao Bernardino J, Moretti DB, Brassaloti RA, de Lello Rocha Campos Cassano R, Mariani PDSC, Kitajima JP, Santos B, Proto-Siqueira R, Cantarelli VV, Tosta S, Nardy VB, de Oliveira da Silva LR, Kelly Astete Gómez M, Lima JG, Ribeiro AA, Guimarães NR, Watanabe LT, Da Silva LB, da Silva Ferreira R, da Penha MPF, Ortega MJ, de la Fuente AG, Villalba S, Torales J, Gamarra ML, Aquino C, Martínez Figueredo GP, Fava WS, Motta-Castro ARC, Venturini J, de Oliveira SMDVL, Gonçalves CCM, do Carmo Debur Rossa M, Becker GN, Presibella MM, Marques NQ, Riediger IN, Raboni S, Coelho GM, Cataneo AHD, Zanluca C, Dos Santos CND, Assato PA, da Costa FADS, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Moraes MM, Grotto RMT, Souza-Neto JA, Nogueira ML, Fukumasu H, Coutinho LL, Calado RT, Neto RM, de Filip… See abstract for full author list ➔ Giovanetti M, et al. medRxiv [Preprint]. 2022 Mar 28:2021.10.07.21264644. doi: 10.1101/2021.10.07.21264644. medRxiv. 2022. Update in: Nat Microbiol. 2022 Sep;7(9):1490-1500. doi: 10.1038/s41564-022-01191-z. PMID: 35378755 Free PMC article. Updated. Preprint.

References

    1. Coronavirus Disease (COVID-19) Situation Reports (WHO, 20 June 2022); https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situatio...
    1. COVID-19 Map (Johns Hopkins Coronavirus Resource Center, 20 June 2022); https://coronavirus.jhu.edu/map.html
    1. COVID-19 Situation Reports (Pan American Health Organization (PAHO)/WHO, 20 June 2022); https://www.paho.org/en/covid-19-situation-reports
    1. Candido DS, et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369:1255–1260. doi: 10.1126/science.abd2161. - DOI - PMC - PubMed
    1. Xavier J, et al. The ongoing COVID-19 epidemic in Minas Gerais, Brazil: insights from epidemiological data and SARS-CoV-2 whole genome sequencing. Emerg. Microbes Infect. 2020;9:1824–1834. doi: 10.1080/22221751.2020.1803146. - DOI - PMC - PubMed

Publication types

Supplementary concepts