Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May;28(5):495-509.

Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes

  • PMID: 3598395
Free article

Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes

H Esterbauer et al. J Lipid Res. 1987 May.
Free article

Abstract

The alteration of structural and biological properties of human plasma low density lipoprotein (LDL) exposed to oxidative conditions is in part ascribed to lipid peroxidation. The objective of this investigation was to measure quantitatively several parameters in oxidizing LDL indicative for lipid peroxidation. Exposure of freshly prepared EDTA-free LDL to an oxygen-saturated buffer led to a complete depletion of alpha- and gamma-tocopherol within 6 hr, thereafter lipid peroxidation commenced as indicated by the kinetics of the loss of linoleic (18:2) and arachidonic (20:4) acids, the formation of aldehydic lipid peroxidation products and fluorescent apoB. Within 24 hr of oxidation, on average 79 nmol of 18:2 (initial 345) and 12.8 nmol of 20.4 (initial 25.6) were oxidized per mg of LDL and the sample contained in total 7.1 nmol of aldehydes with the following molar distribution: 36.6% malonaldehyde, 25% hexanal, 8.9% propanal, 8.2% 4-hydroxynonenal, 7.6% butanal, 4.1% 2.4-heptadienal, 3.4% pentanal, 3.4% 4-hydroxyhexenal, and 2.5% 4-hydroxyoctenal. Malonaldehyde was predominantly (93%) in the aqueous phase, whereas the other aldehydes remained mostly (34-98%) within the LDL particle, where the total aldehyde concentration was in the range of 12 mM. Oxidized LDL exhibited a 1.6-fold enhanced electrophoretic mobility. Similarily, native LDL incubated for 5 hr with aldehydes showed increased electrophoretic mobility. At equal concentrations (5 mM) 4-hydroxynonenal was most effective, followed by 2,4-heptadienal, hexanal, and malonaldehyde. This study reports for the first time the rate and extent of the change of LDL constituents occurring during lipid peroxidation.

PubMed Disclaimer

Publication types

LinkOut - more resources