Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:218:24-34.
doi: 10.1016/j.thromres.2022.08.007. Epub 2022 Aug 11.

Predicting drug-drug interactions with physiologically based pharmacokinetic/pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration

Affiliations

Predicting drug-drug interactions with physiologically based pharmacokinetic/pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration

Hai-Ni Wen et al. Thromb Res. 2022 Oct.

Abstract

Background: The concurrent administration of dronedarone and oral anti-coagulants is common because both are used in managing atrial fibrillation (AF). Dronedarone is a moderate inhibitor of the cytochrome P450 3A4 (CYP3A4) enzyme and P-glycoprotein (P-gp). Apixaban and rivaroxaban are P-gp and CYP3A4 substrates. This study aims to investigate the impact of exposure and bleeding risk of apixaban or rivaroxaban when co-administered with dronedarone using physiologically based pharmacokinetic/pharmacodynamic analysis.

Methods: Modeling and simulation were conducted using Simcyp® Simulator. The parameters required for dronedarone modeling were collected from the literature. The developed dronedarone physiologically based pharmacokinetic (PBPK) model was verified using reported drug-drug interactions (DDIs) between dronedarone and CYP3A4 and P-gp substrates. The model was applied to evaluate the DDI potential of dronedarone on the exposure of apixaban 5 mg every 12 h or rivaroxaban 20 mg every 24 h in geriatric and renally impaired populations. DDIs precipitating major bleeding risks were assessed using exposure-response analyses derived from literature.

Results: The model accurately described the pharmacokinetics of orally administered dronedarone in healthy subjects and accurately predicted DDIs between dronedarone and four CYP3A4 and P-gp substrates with fold errors <1.5. Dronedarone co-administration led to a 1.29 (90 % confidence interval (CI): 1.14-1.50) to 1.31 (90 % CI: 1.12-1.46)-fold increase in the area under concentration-time curve for rivaroxaban and 1.33 (90 % CI: 1.15-1.68) to 1.46 (90 % CI: 1.24-1.92)-fold increase for apixaban. The PD model indicated that dronedarone co-administration might potentiate the mean major bleeding risk of apixaban with a 1.45 to 1.95-fold increase. However, the mean major bleeding risk of rivaroxaban was increased by <1.5-fold in patients with normal or impaired renal function.

Conclusions: Dronedarone co-administration increased the exposure of rivaroxaban and apixaban and might potentiate major bleeding risks. Reduced apixaban and rivaroxaban dosing regimens are recommended when dronedarone is co-administered to patients with AF.

Keywords: Apixaban; Dronedarone; Drug-drug interaction; Major bleeding risk; Physiologically based pharmacokinetic; Rivaroxaban.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Zheng Jiao reports a relationship with Takeda Pharmaceutical Co Ltd. that includes: consulting or advisory. Zheng Jiao reports a relationship with Sanofi China that includes: consulting or advisory.

Similar articles

Cited by

LinkOut - more resources