Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan-Feb;68(1):17-41.
doi: 10.1016/j.survophthal.2022.08.005. Epub 2022 Aug 17.

Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review

Affiliations
Free article
Review

Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review

Lauren J Coan et al. Surv Ophthalmol. 2023 Jan-Feb.
Free article

Abstract

Glaucoma is a leading cause of irreversible vision impairment globally, and cases are continuously rising worldwide. Early detection is crucial, allowing timely intervention that can prevent further visual field loss. To detect glaucoma an examination of the optic nerve head via fundus imaging can be performed, at the center of which is the assessment of the optic cup and disc boundaries. Fundus imaging is noninvasive and low-cost; however, image examination relies on subjective, time-consuming, and costly expert assessments. A timely question to ask is: "Can artificial intelligence mimic glaucoma assessments made by experts?" Specifically, can artificial intelligence automatically find the boundaries of the optic cup and disc (providing a so-called segmented fundus image) and then use the segmented image to identify glaucoma with high accuracy? We conducted a comprehensive review on artificial intelligence-enabled glaucoma detection frameworks that produce and use segmented fundus images and summarized the advantages and disadvantages of such frameworks. We identified 36 relevant papers from 2011 to 2021 and 2 main approaches: 1) logical rule-based frameworks, based on a set of rules; and 2) machine learning/statistical modeling-based frameworks. We critically evaluated the state-of-art of the 2 approaches, identified gaps in the literature and pointed at areas for future research.

Keywords: Artificial intelligence; Automatic detection; Classification/discrimination; Fundus images/imaging; Glaucoma; Prediction; Segment/segmented/segmentation.

PubMed Disclaimer

Publication types

LinkOut - more resources