Enhanced Competition at the Nano-Bio Interface Enables Comprehensive Characterization of Protein Corona Dynamics and Deep Coverage of Proteomes
- PMID: 35986672
- DOI: 10.1002/adma.202206008
Enhanced Competition at the Nano-Bio Interface Enables Comprehensive Characterization of Protein Corona Dynamics and Deep Coverage of Proteomes
Abstract
Introducing engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle-protein interface, driven by the relationship between protein-NP affinity and protein abundance. This enables scalable systems that leverage protein-nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Here the importance of the protein to NP-surface ratio (P/NP) is demonstrated and protein corona formation dynamics are modeled, which determine the competition between proteins for binding. Tuning the P/NP ratio significantly modulates the protein corona composition, enhancing depth and precision of a fully automated NP-based deep proteomic workflow (Proteograph). By increasing the binding competition on engineered NPs, 1.2-1.7× more proteins with 1% false discovery rate are identified on the surface of each NP, and up to 3× more proteins compared to a standard plasma proteomics workflow. Moreover, the data suggest P/NP plays a significant role in determining the in vivo fate of nanomaterials in biomedical applications. Together, the study showcases the importance of P/NP as a key design element for biomaterials and nanomedicine in vivo and as a powerful tuning strategy for accurate, large-scale NP-based deep proteomic studies.
Keywords: Vroman effect; machine learning; nano-bio interactions; nanoparticles; protein corona; proteomics.
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
References
-
- N. L. Anderson, N. G. Anderson, Mol. Cell. Proteomics 2002, 1, 845.
-
- V. Nanjappa, J. K. Thomas, A. Marimuthu, B. Muthusamy, A. Radhakrishnan, R. Sharma, A. A. Khan, L. Balakrishnan, N. A. Sahasrabuddhe, S. Kumar, B. N. Jhaveri, K. V. Sheth, R. K. Khatana, P. G. Shaw, S. M. Srikanth, P. P. Mathur, S. Shankar, D. Nagaraja, R. Christopher, S. Mathivanan, R. Raju, R. Sirdeshmukh, A. Chatterjee, R. J. Simpson, H. C. Harsha, A. Pandey, T. S. K. Prasad, Nucleic Acids Res. 2014, 42, D959.
-
- R. Aebersold, J. N. Agar, I. J. Amster, M. S. Baker, C. R. Bertozzi, E. S. Boja, C. E. Costello, B. F. Cravatt, C. Fenselau, B. A. Garcia, Y. Ge, J. Gunawardena, R. C. Hendrickson, P. J. Hergenrother, C. G. Huber, A. R. Ivanov, O. N. Jensen, M. C. Jewett, N. L. Kelleher, L. L. Kiessling, N. J. Krogan, M. R. Larsen, J. A. Loo, R. R. O. Loo, E. Lundberg, M. J. MacCoss, P. Mallick, V. K. Mootha, M. Mrksich, T. W. Muir, et al.,, Nat. Chem. Biol. 2018, 14, 206.
-
- I. Bludau, M. Frank, C. Dörig, Y. Cai, M. Heusel, G. Rosenberger, P. Picotti, B. C. Collins, H. Röst, R. Aebersold, Nat. Commun. 2021, 12, 3810.
-
- L. M. Smith, J. N. Agar, J. Chamot-Rooke, P. O. Danis, Y. Ge, J. A. Loo, L. Paša-Tolić, Y. O. Tsybin, N. L. Kelleher, Sci. Adv. 2021, 7, eabk0734.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
