Towards the description of charge transfer states in solubilised LHCII using subsystem DFT
- PMID: 35988131
- PMCID: PMC10070235
- DOI: 10.1007/s11120-022-00950-7
Towards the description of charge transfer states in solubilised LHCII using subsystem DFT
Abstract
Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using subsystem Density Functional Theory over the classical [Formula: see text]s MD trajectory we look explicitly into the excitation energies of the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.
Keywords: Charge transfer; Chromophore; Diabatic; Exciton.
© 2022. The Author(s).
Conflict of interest statement
The authors have no relevant financial or non-financial interests to disclose
Figures









Similar articles
-
Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.Phys Chem Chem Phys. 2017 Jul 19;19(28):18311-18320. doi: 10.1039/c7cp03284f. Phys Chem Chem Phys. 2017. PMID: 28678259
-
Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II.Photosynth Res. 2020 May;144(2):171-193. doi: 10.1007/s11120-020-00745-8. Epub 2020 Apr 20. Photosynth Res. 2020. PMID: 32307623
-
Understanding the Relation between Structural and Spectral Properties of Light-Harvesting Complex II.J Phys Chem A. 2021 May 27;125(20):4313-4322. doi: 10.1021/acs.jpca.1c01467. Epub 2021 May 12. J Phys Chem A. 2021. PMID: 33979158 Free PMC article.
-
Plant and Algal PSII-LHCII Supercomplexes: Structure, Evolution and Energy Transfer.Plant Cell Physiol. 2021 Oct 29;62(7):1108-1120. doi: 10.1093/pcp/pcab072. Plant Cell Physiol. 2021. PMID: 34038564 Review.
-
Recent progress in atomistic modeling of light-harvesting complexes: a mini review.Photosynth Res. 2023 Apr;156(1):147-162. doi: 10.1007/s11120-022-00969-w. Epub 2022 Oct 7. Photosynth Res. 2023. PMID: 36207489 Free PMC article. Review.
Cited by
-
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13. J Phys Chem Lett. 2023. PMID: 37702053 Free PMC article.
-
Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective.J Chem Inf Model. 2025 Jan 27;65(2):472-511. doi: 10.1021/acs.jcim.4c01212. Epub 2024 Nov 29. J Chem Inf Model. 2025. PMID: 39611724 Free PMC article. Review.
-
Quasiparticle Self-Consistent GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems.J Chem Theory Comput. 2022 Nov 8;18(11):6779-6793. doi: 10.1021/acs.jctc.2c00531. Epub 2022 Oct 6. J Chem Theory Comput. 2022. PMID: 36201788 Free PMC article.
References
-
- Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Baseggio O, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Daul C, Chong DP, Chulhai DV, Deng L, Dickson RM, Dieterich JM, Ellis DE, van Faassen M, Fan L, Fischer TH, Förster A, Guerra CF, Franchini M, Ghysels A, Giammona A, van Gisbergen SJA, Goez A, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Hu Z, Jacob CR, Jacobsen H, Jensen L, Joubert L, Kaminski JW, van Kessel G, König C, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ramanantoanina H, Ramos P, Ravenek W, Reimann M, Rodríguez JI, Ros P, Rüger R, Schipper PRT, Schlüns D, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Stener M, Swart M, Swerhone D, Tognetti V, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2018) ADF2018, SCM, theoretical chemistry. Vrije Universiteit, Amsterdam. https://www.scm.com
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources