Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism?
- PMID: 35988811
- DOI: 10.1016/j.bbabio.2022.148911
Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism?
Abstract
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.
Keywords: Carotid body; Cox4i2; Hypoxia; Mitochondria; Oxygen sensor; PASMC.
Copyright © 2022 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
