Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors
- PMID: 35989568
- DOI: 10.1002/wnan.1842
Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors
Abstract
The tumor microenvironment (TME) is a very cunning system that enables tumor cells to escape death post-traditional antitumor treatments through the comprehensive effect of different factors, thereby leading to drug resistance. Deep insights into TME characteristics and tumor resistance encourage the construction of nanomedicines that can remodel the TME against drug resistance. Tremendous interest in combining TME-regulation measurement with traditional tumor treatment to fight multidrug-resistant tumors has been inspired by the increasing understanding of the role of TME reconstruction in improving the antitumor efficiency of drug-resistant tumor therapy. This review focuses on the underlying relationships between specific TME characteristics (such as hypoxia, acidity, immunity, microorganisms, and metabolism) and drug resistance in tumor treatments. The exciting antitumor activities strengthened by TME regulation are also discussed in-depth, providing solutions from the perspective of nanomedicine design. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Keywords: TME reconstruction; drug-resistance; hypoxia; nanomedicine; tumor microenvironment.
© 2022 Wiley Periodicals LLC.
Similar articles
-
Remodeling tumor microenvironment with nanomedicines.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Nov;13(6):e1730. doi: 10.1002/wnan.1730. Epub 2021 Jun 14. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. PMID: 34124849 Review.
-
Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Mar-Apr;16(2):e1950. doi: 10.1002/wnan.1950. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024. PMID: 38528388 Review.
-
Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1704. doi: 10.1002/wnan.1704. Epub 2021 Feb 9. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021. PMID: 33565269 Review.
-
Improved cancer immunotherapy strategies by nanomedicine.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 May-Jun;15(3):e1873. doi: 10.1002/wnan.1873. Epub 2022 Dec 28. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023. PMID: 36576112 Review.
-
Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 May-Jun;15(3):e1864. doi: 10.1002/wnan.1864. Epub 2022 Nov 5. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023. PMID: 36333962 Review.
Cited by
-
Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies.MedComm (2020). 2024 Jun 22;5(7):e603. doi: 10.1002/mco2.603. eCollection 2024 Jul. MedComm (2020). 2024. PMID: 38911063 Free PMC article. Review.
-
Writers, readers, and erasers RNA modifications and drug resistance in cancer.Mol Cancer. 2024 Aug 30;23(1):178. doi: 10.1186/s12943-024-02089-6. Mol Cancer. 2024. PMID: 39215288 Free PMC article. Review.
-
Advances of medical nanorobots for future cancer treatments.J Hematol Oncol. 2023 Jul 14;16(1):74. doi: 10.1186/s13045-023-01463-z. J Hematol Oncol. 2023. PMID: 37452423 Free PMC article. Review.
-
Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma.Molecules. 2024 Sep 16;29(18):4405. doi: 10.3390/molecules29184405. Molecules. 2024. PMID: 39339402 Free PMC article. Review.
-
Engineering Stimuli-Responsive Materials for Precision Medicine.Small. 2025 Jan;21(1):e2406439. doi: 10.1002/smll.202406439. Epub 2024 Oct 23. Small. 2025. PMID: 39444066 Free PMC article. Review.
References
FURTHER READING
-
- Martin, J. D., Miyazaki, T., & Cabral, H. (2021). Remodeling tumor microenvironment with nanomedicines. WIREs Nanomedicine and Nanobiotechnology, 13, e1730. https://doi.org/10.1002/wnan.1730
-
- Qiao, Y., Wan, J., Zhou, L., Ma, W., Yang, Y., Luo, W., Yu, Z., & Wang, H. (2019). Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomedicine and Nanobiotechnology, 11, e1527. https://doi.org/10.1002/wnan.1527
REFERENCES
-
- Abumanhal-Masarweh, H., Koren, L., Zinger, A., Yaari, Z., Krinsky, N., Kaneti, G., Dahan, N., Lupu-Haber, Y., Suss-Toby, E., Weiss-Messer, E., Schlesinger-Laufer, M., Shainsky-Roitman, J., & Schroeder, A. (2019). Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. Journal of Controlled Release: Official Journal of the Controlled Release Society, 296, 1-13. https://doi.org/10.1016/j.jconrel.2019.01.004
-
- Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921-R925. https://doi.org/10.1016/j.cub.2020.06.081
-
- Ando, H., Emam, S. E., Kawaguchi, Y., Shimizu, T., Ishima, Y., Eshima, K., & Ishida, T. (2021). Increasing tumor extracellular pH by an oral alkalinizing agent improves antitumor responses of anti-PD-1 antibody: Implication of relationships between serum bicarbonate concentrations, urinary pH, and therapeutic outcomes. Biological & Pharmaceutical Bulletin, 44(6), 844-852. https://doi.org/10.1248/bpb.b21-00076
-
- Azzarito, T., Venturi, G., Cesolini, A., & Fais, S. (2015). Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma. Cancer Letters, 356(2 Pt B), 697-703. https://doi.org/10.1016/j.canlet.2014.10.017
-
- Bao, M. H., & Wong, C. C. (2021). Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cell, 10(7), 1715. https://doi.org/10.3390/cells10071715
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical