Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:252:123779.
doi: 10.1016/j.talanta.2022.123779. Epub 2022 Aug 13.

A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources

Affiliations

A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources

Kaylan K Jackson et al. Talanta. .

Abstract

In the emerging field of phyto-nanotechnology, 30-200 nm plant-derived extracellular vesicles (PDEVs) are now known to contain active biomolecules that mediate cell-to-cell communication processes in a manner very similar to exosomes in mammalian cells. The ability to deliver cargo across cellular membranes suggests that botanical systems could be used in the mass production of therapeutic vectors to transport exogenous molecules into human cells. The fundamental biochemical characteristics of PDEVs remain poorly understood due to the lack of efficient methods to isolate and characterize these nanovesicles. Described here is a rapid PDEV isolation method using a hydrophobic interaction chromatography (HIC)-based extraction performed on a capillary-channeled polymer (C-CP) fiber spin-down tip. The C-CP solid-phase extraction method is performed using a standard table-top centrifuge, enabling the isolation and concentration of PDEVs (>1 × 1010 particles from 100 μL of sample). PDEVs of 189 nm average diameter were obtained from 20 common fruit and vegetable stocks. The size, integrity, and purity of the recovered PDEVs were assessed using transmission electron microscopy (TEM), multi-angle light scattering (MALS), absorbance quantification, a protein purity assay, and an enzyme-linked immunosorbent assay (ELISA) to the PEN1 PDEV surface marker protein. The HIC C-CP tip isolation method allows for concentrated PDEV recoveries (up to 2 × 1011 EVs) on reasonable time scales (<15 min) and low cost (<$1), with the purity and integrity fit for fundamental research and downstream applications.

Keywords: Capillary-channeled polymer (C-CP); Exosomes; Isolation; Plant materials; Plant-derived extracellular vesicles (PDEVs); Solid-phase extraction (SPE).

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources