Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct:186:107013.
doi: 10.1016/j.eplepsyres.2022.107013. Epub 2022 Aug 18.

A replicable, open-source, data integration method to support national practice-based research & quality improvement systems

Affiliations

A replicable, open-source, data integration method to support national practice-based research & quality improvement systems

Marta Fernandes et al. Epilepsy Res. 2022 Oct.

Abstract

Objectives: The Epilepsy Learning Healthcare System (ELHS) was created in 2018 to address measurable improvements in outcomes for people with epilepsy. However, fragmentation of data systems has been a major barrier for reporting and participation. In this study, we aimed to test the feasibility of an open-source Data Integration (DI) method that connects real-life clinical data to national research and quality improvement (QI) systems.

Methods: The ELHS case report forms were programmed as EPIC SmartPhrases at Mass General Brigham (MGB) in December 2018 and subsequently as EPIC SmartForms in June 2021 to collect actionable, standardized, structured epilepsy data in the electronic health record (EHR) for subsequent pull into the external national registry of the ELHS. Following the QI methodology in the Chronic Care Model, 39 providers, epileptologists and neurologists, incorporated the ELHS SmartPhrase into their clinical workflow, focusing on collecting diagnosis of epilepsy, seizure type according to the International League Against Epilepsy, seizure frequency, date of last seizure, medication adherence and side effects. The collected data was stored in the Enterprise Data Warehouse (EDW) without integration with external systems. We developed and validated a DI method that extracted the data from EDW using structured query language and later preprocessed using text mining. We used the ELHS data dictionary to match fields in the preprocessed notes to obtain the final structured dataset with seizure control information. For illustration, we described the data curated from the care period of 12/2018-12/2021.

Results: The cohort comprised a total of 1806 patients with a mean age of 43 years old (SD: 17.0), where 57% were female, 80% were white, and 84% were non-Hispanic/Latino. Using our DI method, we automated the data mining, preprocessing, and exporting of the structured dataset into a local database, to be weekly accessible to clinicians and quality improvers. During the period of SmartPhrase implementation, there were 5168 clinic visits logged by providers documenting each patient's seizure type and frequency. During this period, providers documented 59% patients having focal seizures, 35% having generalized seizures and 6% patients having another type. Of the cohort, 45% patients had private insurance. The resulting structured dataset was bulk uploaded via web interface into the external national registry of the ELHS.

Conclusions: Structured data can be feasibly extracted from text notes of epilepsy patients for weekly reporting to a national learning healthcare system.

Keywords: Epilepsy; International League Against Epilepsy; Learning Health System; Quality Improvement; Seizure control; Text analytics.

PubMed Disclaimer

Conflict of interest statement

Declarations of Interest None.

Figures

Fig. 1.
Fig. 1.
Clinical data flow process. EDW – Enterprise Data Warehouse. EHR – Electronic Health Record. QI – Quality Improvement. PROMs – Patient-Reported Outcome Measures.
Fig. 2.
Fig. 2.
Methodology for notes preprocessing. EDW – Enterprise Data Warehouse. EHR – Electronic Health Record. MRN – Medical Record Number. ELHS – The Epilepsy Learning Healthcare System. ILAE – The International League Against Epilepsy. ASM – Anti-seizure medication. ELHS specifications categories and respective acronyms are presented in Supplementary Table 2.
Fig. 3.
Fig. 3.
Inclusion and exclusion criteria to select the cohort population.
Fig. 4.
Fig. 4.
Statistics for all notes containing seizure control metrics captured with the regular expressions for the study cohort population. The number of notes and patients are displayed for (a) the period before and after the implementation of ASM documentation, and (b) the study period. ILAE – The International League Against Epilepsy. ASM – Anti-seizure medication.
Fig. 5.
Fig. 5.
Percentage of patients in the study cohort population with documented seizure control metrics before and after ASM documentation date. ILAE – The International League Against Epilepsy. ASM – Anti-seizure medication.

References

    1. Bell D, Gachuhi N, Assefi N, 2018. Dynamic clinical algorithms: digital technology can transform health care decision-making. Am. J. Trop. Med. Hyg 98 (1), 9–14. 10.4269/ajtmh.17-0477. - DOI - PMC - PubMed
    1. Bindman AB, Pronovost PJ, Asch DA, 2018. Funding innovation in a learning health care system. JAMA 319 (2), 119–120. 10.1001/jama.2017.18205. - DOI - PubMed
    1. Barbour K, Hesdorffer DC, Tian N, Yozawitz EG, McGoldrick PE, Wolf S, McDonough TL, Nelson A, Loddenkemper T, Basma N, Johnson SB, Grinspan Z, 2019. Automated detection of sudden unexpected death in epilepsy risk factors in electronic medical records using natural language processing. Epilepsia 60 (6), 1209–1220. 10.1111/epi.15966. - DOI - PMC - PubMed
    1. Budrionis A, Bellika JG, 2016. The learning healthcare system: where are we now? a systematic review. J. Biomed. Inform 64, 87–92. 10.1016/j.jbi.2016.09.018. - DOI - PubMed
    1. Cui L, Bozorgi A, Lhatoo SD, Zhang GQ, Sahoo SS, 2012. EpiDEA: extracting structured epilepsy and seizure information from patient discharge summaries for cohort identification. AMIA Annu Symp Proc. 2012, 1191–1200. - PMC - PubMed

Publication types