Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 25:365:110121.
doi: 10.1016/j.cbi.2022.110121. Epub 2022 Aug 19.

MeHg exposure impairs both the catecholaminergic and cholinergic systems resulting in motor and non-motor behavioral changes in Drosophila melanogaster

Affiliations

MeHg exposure impairs both the catecholaminergic and cholinergic systems resulting in motor and non-motor behavioral changes in Drosophila melanogaster

Matheus C Bianchini et al. Chem Biol Interact. .

Abstract

Human exposure to the natural environmental contaminant methylmercury (MeHg) has been associated to adverse health effects. Importantly, the mechanisms by which this organomercurial exerts its neurotoxicity have yet to be fully clarified. Therefore, the aim of this study was to evaluate whether exposure to MeHg alters dopamine (DA) and octopamine (OA) levels, acetylcholinesterase (AChE) activity and impacts both motor and non-motor behaviours. We studied the effect of MeHg by feeding 1-2 d old flies (male and females) with 25 and 50 μM MeHg for 4 d and determined effects on survival, motor and non-motor behaviours, oxidative stress, AChE and tyrosine hydroxylase (TH) activities, as well as DA and OA levels. We found that Drosophila melanogaster (D. melanogaster) exposed to MeHg showed a reduction in survival rate, associated with the inhibition of AChE and TH activities in head of flies and decreased DA and OA levels. These changes were accompanied by behavioural alterations, such as locomotor deficit and increased grooming behaviour, in addition to an increase in oxidative stress markers both in head and in body of flies, and an increase in glutathione-S-transferase (GST) activity in head of flies. Collectively, our data support the hypothesis that MeHg neurotoxicity is associated with altered OA and DA levels, AChE inhibition, which may serve, at least in part, as the underpinnings of both motor and non-motor behavioural changes.

Keywords: Behavior locomotor; Dopamine; Methylmercury; Octopamine; Tyrosine hydroxylase.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources