Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 5:13:e10.
doi: 10.34172/jlms.2022.10. eCollection 2022.

Different Protocols of Combined Application of Photobiomodulation In Vitro and In Vivo Plus Adipose-Derived Stem Cells Improve the Healing of Bones in Critical Size Defects in Rat Models

Affiliations

Different Protocols of Combined Application of Photobiomodulation In Vitro and In Vivo Plus Adipose-Derived Stem Cells Improve the Healing of Bones in Critical Size Defects in Rat Models

Armin Khosravipour et al. J Lasers Med Sci. .

Abstract

Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.

Keywords: Critical size bone defect; Demineralized bone scaffold; Fracture healing; Human adipose-derived stem cell; Photobiomodulation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4

Similar articles

Cited by

References

    1. Wozasek GE. Limb salvage in a partially amputated distal femur with extensive segmental bone loss using the nailing after lengthening technique: a case report. Strat Traum Limb Recon. 2015;10(1):59–63. doi: 10.1007/s11751-015-0212-8. - DOI - PMC - PubMed
    1. Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ, 3rd 3rd. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res. 2014;29(3):581–9. doi: 10.1002/jbmr.2072. - DOI - PMC - PubMed
    1. Calori G, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38:S11–S8. doi: 10.1016/s0020-1383(07)80004-0. - DOI - PubMed
    1. Schlickewei CW, Kleinertz H, Thiesen DM, Mader K,Priemel M, Frosch K-H, et al. Current and Future Concepts for the Treatment of Impaired Fracture Healing. Int J Mol Sci.2019;20(22):5805. https://doi.org/10.3390/ijms20225805 - PMC - PubMed
    1. Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A. 2018;106(9):2552–62. doi: 10.1002/jbm.a.36433. - DOI - PubMed

LinkOut - more resources