Conformer-RL: A deep reinforcement learning library for conformer generation
- PMID: 36000759
- PMCID: PMC9542157
- DOI: 10.1002/jcc.26984
Conformer-RL: A deep reinforcement learning library for conformer generation
Abstract
Conformer-RL is an open-source Python package for applying deep reinforcement learning (RL) to the task of generating a diverse set of low-energy conformations for a single molecule. The library features a simple interface to train a deep RL conformer generation model on any covalently bonded molecule or polymer, including most drug-like molecules. Under the hood, it implements state-of-the-art RL algorithms and graph neural network architectures tuned specifically for molecular structures. Conformer-RL is also a platform for researching new algorithms and neural network architectures for conformer generation, as the library contains modular class interfaces for RL environments and agents, allowing users to easily swap components with their own implementations. Additionally, it comes with tools to visualize and save generated conformers for further analysis. Conformer-RL is well-tested and thoroughly documented with tutorials for each of the functionalities mentioned above, and is available on PyPi and Github: https://github.com/ZimmermanGroup/conformer-rl.
Keywords: conformer generation; graph neural network; machine learning; reinforcement learning.
© 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
Figures




References
-
- Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D., Science 2018, 362, 1140. - PubMed
-
- Vinyals O., Babuschkin I., Czarnecki W. M., Mathieu M., Dudzik A., Chung J., Choi D. H., Powell R., Ewalds T., Georgiev P., Oh J., Horgan D., M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, Kavukcuoglu K., Hassabis D., Apps C., Silver D., Nature 2019, 575, 350. - PubMed
-
- Li Y., Kang H., Ye K., Yin S., Li X., Conference on Neural Information Processing Systems Deep Reinforcement Learning Workshop, Montréal, Canada, 2018. https://arxiv.org/abs/1812.00967
-
- Simm G., Pinsler R., Hernandez‐Lobato J. M., in Proceedings of the 37th International Conference on Machine Learning, Vol. 119 (Eds: III H. D., Singh A.), PMLR, 2020, p. 8959 http://proceedings.mlr.press/v119/simm20b.html
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources