Advances in Computational Polypharmacology
- PMID: 36002382
- PMCID: PMC10078381
- DOI: 10.1002/minf.202200190
Advances in Computational Polypharmacology
Abstract
In drug discovery, polypharmacology encompasses the use of small molecules with defined multi-target activity and in vivo effects resulting from multi-target engagement. Multi-target compounds are often efficacious in the treatment of complex diseases involving target and pathway networks, but might also elicit unwanted side effects. Computational approaches such as target prediction or multi-target ligand design have been used to support polypharmacological drug discovery. In addition to efforts directed at the identification or design of new multi-target compounds, other computational investigations have aimed to differentiate such compounds from potential false-positives or explore the molecular basis of multi-target activities. Herein, a concise overview of the field is provided and recent advances in computational polypharmacology through machine learning are discussed.
Keywords: Polypharmacology; computational methods; explainable machine learning; medicinal chemistry; molecular design; multi-target compounds.
© 2022 The Authors. Molecular Informatics published by Wiley-VCH GmbH.
Conflict of interest statement
None declared.
Figures



Similar articles
-
An up-to-date overview of computational polypharmacology in modern drug discovery.Expert Opin Drug Discov. 2020 Sep;15(9):1025-1044. doi: 10.1080/17460441.2020.1767063. Epub 2020 May 26. Expert Opin Drug Discov. 2020. PMID: 32452701 Free PMC article. Review.
-
Multi-target-based polypharmacology prediction (mTPP): An approach using virtual screening and machine learning for multi-target drug discovery.Chem Biol Interact. 2022 Dec 1;368:110239. doi: 10.1016/j.cbi.2022.110239. Epub 2022 Oct 26. Chem Biol Interact. 2022. PMID: 36309139
-
Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.Expert Opin Drug Discov. 2018 Feb;13(2):179-192. doi: 10.1080/17460441.2018.1413089. Epub 2017 Dec 12. Expert Opin Drug Discov. 2018. PMID: 29233023 Review.
-
Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets.Molecules. 2023 Jan 13;28(2):825. doi: 10.3390/molecules28020825. Molecules. 2023. PMID: 36677879 Free PMC article.
-
Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds.J Med Chem. 2019 Jan 24;62(2):420-444. doi: 10.1021/acs.jmedchem.8b00760. Epub 2018 Aug 3. J Med Chem. 2019. PMID: 30035545
Cited by
-
Polypharmacology: new drugs in 2023-2024.Pharmacol Rep. 2025 Jun;77(3):543-560. doi: 10.1007/s43440-025-00715-8. Epub 2025 Mar 17. Pharmacol Rep. 2025. PMID: 40095348 Free PMC article. Review.
-
Epoxy-a-lapachone in nanosystem: a prototype drug for leishmaniasis assessed in the binomial BALB/c - Leishmania (Leishmania) amazonensis.Mem Inst Oswaldo Cruz. 2024 Oct 28;119:e240115. doi: 10.1590/0074-02760240115. eCollection 2024. Mem Inst Oswaldo Cruz. 2024. PMID: 39476028 Free PMC article.
-
Polypharmacology: promises and new drugs in 2022.Pharmacol Rep. 2023 Aug;75(4):755-770. doi: 10.1007/s43440-023-00501-4. Epub 2023 Jun 6. Pharmacol Rep. 2023. PMID: 37278927 Free PMC article. Review.
-
Tackling assay interference associated with small molecules.Nat Rev Chem. 2024 May;8(5):319-339. doi: 10.1038/s41570-024-00593-3. Epub 2024 Apr 15. Nat Rev Chem. 2024. PMID: 38622244 Review.
References
-
- J. U. Peters (Ed.), Polypharmacology in Drug Discovery. John Wiley & Sons, Hoboken, 2012.
-
- Anighoro A., Bajorath J., Rastelli G., J. Med. Chem. 2014, 57, 7874–7887. - PubMed
-
- Benek O., Korabecny J., Soukup O., Trends Pharmacol. Sci. 2020, 41, 434–445. - PubMed
-
- Tschöp M. H., Finan B., Clemmensen C., Gelfanov V., Perez-Tilve D., Müller T. D., DiMarchi R. D., Cell Metab. 2016, 24, 51–62. - PubMed
Publication types
LinkOut - more resources
Full Text Sources