Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 24;15(1):298.
doi: 10.1186/s13071-022-05367-8.

Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions

Affiliations
Review

Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions

Jackson M Muema et al. Parasit Vectors. .

Abstract

An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.

Keywords: Anti-infectives; Arthropod disease vectors; Disease control; Human pathogen transmission-blocking; Natural products.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Summarized analyses of the highlighted compounds retrieved from literature. A Overall distribution of sources of natural compounds highlighted in this review. B Disease target profile of the highlighted natural compounds. C Trends in exploration of natural products in pursuit of pathogen transmission-blocking between 2000 and 2021
Fig. 2
Fig. 2
Chemical structures of compounds 117. Romidepsin (1), Violacein (2), Epoxomicin (3), thiostrepton (4), ivermectin (5), chlorotonil a (6), bt37 (7), bt122 (8), p-orlandin (9), asperaculane b (10), pulixin (11), monensin a (12), nigericin (13), salinomycin (14), narasin (15), maduramicin (16), NITD609 (17)
Fig. 3
Fig. 3
Chemical structures of compounds 1831. Corallopyronin A (CorA) (18), kirromycin b (19), kirromycin (20), kirromycin c (21), abbv-4083 (22), an11251 (23), globomycin (24), doxycycline (25), minocycline (26), rifampicin (27), azithromycin (28), tirandamycin b (29), WS9326a (30), adipostatin compound (31)
Fig. 4
Fig. 4
Chemical structures of compounds 3239. Nanchangmycin (32), cavinafungin (33), soraphen a (34), labyrinthopeptins a1 (35), labyrinthopeptins a2 (36), mycophenolic acid (mpa) (37), cyclosporine a (38), daptomycin (39)
Fig. 5
Fig. 5
Chemical structures of compounds 4056. Antimycin A1a (40), acetylspiramycin (41), brefeldin a (42), abamectin (43), debromoaplysiatoxin (44), bafilomycin (45), azadirachtin a (46), gedunin (47), deacetylnimbin (48), vernodalol (49), daucovirgolide g (50), 6-o-angeloxyl-8-o-senecioyl-6β,8α,11-trihydroxygermacra-1(10)e,4e-diene (51), parthenin (52), parthenolide (53), 1α,4α -dihydroxybishopsolicepolide (54), artemisone (55), artemiside (56)
Fig. 6
Fig. 6
Chemical structures of compounds 5780. 10-Aminoartemisinin compound (57), 10-aminoartemisinin compound (58), 10-aminoartemisinin compound (59), 10-aminoartemisinin compound (60), trigocherriolide A (61), prostratin (62), 12-O-tetradecanoylphorbol 13-acetate (63), trigocherrierin A (64), trigocherriolide E (65), 12-O-decanoylphorbol 13-acetate (66), 12-O-decanoyl-7-hydroperoxy-phorbol-5-ene-13-acetate (67), (2R,3R,4S,5R,7S,8R,13R,15R)-3,5,7,15-tetraacetoxy-2-hydroxy-8-tigloyloxy-9,14-dioxojatropha-6(17),11E-diene (68), phorbol-12,13-didecanoate (69), tonantzitlolone B (70), 12-deoxyphorbol-13(2"-methyl)butyrate (71), stachyonic acid a (72), compound 73, compound 74, compound 75, compound 76, compound 77, compound 78, ((4r,9s,14s)-4α-acetoxy-9β,14α-dihidroxydolast-1(15),7-diene (79), betulinic acid (80)
Fig. 7
Fig. 7
Chemical structures of compounds 8198. Photogedunin (81), analog compound 82, ursolic acid (83), labda-8(20),13-diene-15-oic acid (84), quinine (85), securinine (86), virosecurinine (87), allosecurinine (88), cryptolepine (89), 3-chloro-8-nitro-tryptanthrin, 3-chloro-8-nitro-indolo [2,1-b] quinazoline-6,12-dione (nt1) (90), 3-chloro-indolo [2,1-b] quinazoline-6,12-dione (t8) (91), dihydronitidine (92), jozimine a2 (93), dioncophylline c (94), ealapasamine c (95), dimer compound 96, compound 97, (−)-R,S-dehydroemetine (98)
Fig. 8
Fig. 8
Chemical structures of compounds 99124. Juliprosopine (99), tazopsine (100), NCP-tazopsine (101), sinococuline (102), berberine (103), harringtonine (104), halofuginone (105), tomatidine (106), castanospermine (107), lycorine (108), 1-acetyllycorine analogue (109), cherylline (110), emetine (111), epigallocatechin gallate (112), lophirone e (113), caffeic acid phenethyl ester (114), naringenin (115), chartaceone c (116), chartaceone d (117), chartaceone e (118), chartaceone f (119), baicalein (120), sotetsflavone (121), coumarin a 34sk001 (122), coumarin b 34sk002 (123), cardol triene (124)
Fig. 9
Fig. 9
Chemical structures of compounds 125138. Eugeniin (125), silvestrol (126), houttuynoid B derivative (tk1023) (127), genistein (128), lanceolin b (129), sn-2 (130), mandelonitrile (131), esculetin (132), anthraquinone k (133), alnus dimer (134), (5 s)-5- hydroxy-1-(4-hydroxyphenyl)-7-(3,4-dihydroxyphenyl)-3-heptanone (135), octadeca-9,11,13-triynoic acid (136), (13e)-octadec-13-en-9,11-diynoic acid (137), (13E)-octadec-13-en-11-ynoic acid (138)
Fig. 10
Fig. 10
Chemical structures of compounds 139151. Diastereoisomers compound 139, diastereoisomers compound 140, lanatoside c (141), ouabain (142), quinic acid amide derivative 143, quinic acid amide derivative 144, diphyllin (145), anthranilic acid (fam e3) (146), (17r,9z)-1,17-diaminooctadec-9-ene (harmonine) (147), melittin (148), ecdysteroid (20e) (149), abscisic acid (150), compound 151

Similar articles

References

    1. Debebe Y, Hill SR, Birgersson G, Tekie H, Ignell R. Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Malar J. 2020;19:327. doi: 10.1186/s12936-020-03378-3. - DOI - PMC - PubMed
    1. De Moraes CM, Wanjiku C, Stanczyk NM, Pulido H, Sims JW, Betz HS, et al. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci. 2018;115:5780–5785. doi: 10.1073/pnas.1801512115. - DOI - PMC - PubMed
    1. Busula AO, Bousema T, Mweresa CK, Masiga D, Logan JG, Sauerwein RW, et al. Gametocytemia and attractiveness of Plasmodium falciparum–infected Kenyan children to Anopheles gambiae mosquitoes. J Infect Dis. 2017;216:291–295. doi: 10.1093/infdis/jix214. - DOI - PubMed
    1. Batista EPA, Costa EFM, Silva AA. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasit Vectors. 2014;7:251. doi: 10.1186/1756-3305-7-251. - DOI - PMC - PubMed
    1. da Tavares DS, Salgado VR, Miranda JC, Mesquita PRR, de Rodrigues FM, Barral-Netto M, et al. Attraction of phlebotomine sandflies to volatiles from skin odors of individuals residing in an endemic area of tegumentary leishmaniasis. PLoS ONE. 2018;13:e0203989. doi: 10.1371/journal.pone.0203989. - DOI - PMC - PubMed

Substances

LinkOut - more resources