Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul;32(1):100-8.

Muscarinic receptor heterogeneity in rat central nervous system. II. Brain receptors labeled by [3H]oxotremorine-M correspond to heterogeneous M2 receptors with very high affinity for agonists

  • PMID: 3600611

Muscarinic receptor heterogeneity in rat central nervous system. II. Brain receptors labeled by [3H]oxotremorine-M correspond to heterogeneous M2 receptors with very high affinity for agonists

M Gillard et al. Mol Pharmacol. 1987 Jul.

Abstract

We compared the binding characteristics of muscarinic receptors labeled by [3H]oxotremorine-M ([3H]oxo-M) in homogenates of brain cortex and heart from rat. In both tissues [3H]oxo-M bound, with the same KD (6.5 nM), to a fraction of the receptors labeled by [3H]-N-methylscopolamine ([3H]NMS). This [3H]oxo-M receptor population represented, respectively, 15-20% and 35-40% of the total number of [3H]NMS receptors in cortex and heart. The three unlabeled agonists oxotremorine, carbamylcholine, and pilocarpine, when tested in competition with [3H]oxo-M, displayed a homogeneous super high affinity toward [3H]oxo-M-labeled receptors, and were unable to discriminate between brain and heart receptors labeled by [3H]oxo-M. By contrast, selective muscarinic antagonists showed some selectivity for either brain or heart [3H]oxo-M-labeled receptors. We analyzed competition curves between [3H]oxo-M and secoverine, pirenzepine, AF-DX 116, dicyclomine, or gallamine, assuming the existence of one or two receptor subclasses. Heart muscarinic receptors labeled by [3H]oxo-M were homogeneous M2 receptors of the C type with very low affinity for pirenzepine (Ki = 400 nM). Brain [3H]oxo-M-labeled receptors were heterogeneous receptors, with 30% (the B type) having a higher affinity for dicyclomine and a lower affinity for AF-DX 116 and gallamine than cardiac receptors, whereas the remaining 70% (the C type) showed "cardiac-like" binding properties. Both [3H]oxo-M-labeled subtypes in cortex homogenates had a low affinity for pirenzepine, indicating that [3H]oxo-M labeled only B and C (M2) receptors in this tissue. GTP inhibited completely [3H]oxo-M binding in heart homogenates with an IC50 at 300 nM. In cortex homogenates, GTP showed the same potency, but its efficacy was much lower (with only 30% maximal inhibition). [3H]oxo-M dissociation kinetics were monophasic in heart homogenates and biphasic in cortex homogenates. [3H]oxo-M dissociation from both tissues was slowed by gallamine and d-tubocurarine and accelerated by GTP. We found no correlation between B versus C [3H]oxo-M receptors, GTP-sensitive versus GTP-insensitive receptors, and rapidly versus slowly dissociating receptors, suggesting that [3H] oxo-M labeled a large variety of muscarinic receptor-regulatory protein complexes, all having an SH affinity for agonists.

PubMed Disclaimer

Publication types