Impact of melatonin on the hydrogen peroxide treatment efficacy in Microcystis aeruginosa: Cell growth, oxidative stress response, and gene transcription
- PMID: 36007744
- DOI: 10.1016/j.chemosphere.2022.136036
Impact of melatonin on the hydrogen peroxide treatment efficacy in Microcystis aeruginosa: Cell growth, oxidative stress response, and gene transcription
Abstract
A study was conducted to determine how melatonin (MLT), a growth regulator, affects Microcystis aeruginosa cell behaviour and how MLT exposed cells respond to hydrogen peroxide (H2O2) treatment. MLT promotes the growth, chl-a content, Fv/Fm values, and microcystins (MCs) production of M. aeruginosa at low concentrations of 1-2.5 μmol/L but suppresses the growth at high concentrations (5-10 μmol/L). The cellular and genetic responses of MLT pre-treated cells to H2O2 treatment were examined further. Further research found that the cells pre-treated with MLT were susceptible to a range of growth-promoting, inhibiting and lethal effects when exposed to higher levels of H2O2. A dose-dependent pattern was observed under conditions of 0.05-0.2 mmol/L H2O2 with 0.5-2.5 μmol/L MLT concentrations to different degrees. High doses of H2O2 (0.2 and 0.3 mmol/L) typically lead to cell lysis and release of MCs in 5.0 and 10 μmol/L MLT pre-treated cells. A decrease in SOD/CAT activities and an increase in MDA levels validated the growth reduction. Furthermore, higher cell lysis and release of intracellular MCs were observed when H2O2 was increased for 5-10 μmol/L MLT pre-treated cells. This led to a higher accumulation of extracellular MCs. The results provide insight into how MLT influences H2O2 damage and assist in identifying situations where H2O2 treatment of cyanobacterial blooms is most appropriate.
Keywords: Harmful algal bloom; Hydrogen peroxide; Melatonin; Microcystis aeruginosa; Toxin release.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous