Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2022 Aug 25;24(1):208.
doi: 10.1186/s13075-022-02865-z.

A multicentre, efficacy and safety study of methotrexate to increase response rates in patients with uncontrolled gout receiving pegloticase (MIRROR): 12-month efficacy, safety, immunogenicity, and pharmacokinetic findings during long-term extension of an open-label study

Affiliations
Multicenter Study

A multicentre, efficacy and safety study of methotrexate to increase response rates in patients with uncontrolled gout receiving pegloticase (MIRROR): 12-month efficacy, safety, immunogenicity, and pharmacokinetic findings during long-term extension of an open-label study

John K Botson et al. Arthritis Res Ther. .

Abstract

Background: Publications suggest immunomodulation co-therapy improves responder rates in uncontrolled/refractory gout patients undergoing pegloticase treatment. The MIRROR open-label trial showed a 6-month pegloticase + methotrexate co-therapy responder rate of 79%, compared to an established 42% pegloticase monotherapy responder rate. Longer-term efficacy/safety data are presented here.

Methods: Uncontrolled gout patients (serum urate [SU] ≥ 6 mg/dL and SU ≥ 6 mg/dL despite urate-lowering therapy [ULT], ULT intolerance, or functionally-limiting tophi) were included. Patients with immunocompromised status, G6PD deficiency, severe kidney disease, or methotrexate contraindication were excluded. Oral methotrexate (15 mg/week) and folic acid (1 mg/day) were administered 4 weeks before and during pegloticase therapy. Twelve-month responder rate (SU < 6 mg/dL for ≥ 80% during month 12), 52-week change from baseline in SU, and extended safety were examined. Efficacy analyses were performed for patients receiving ≥ 1 pegloticase infusion. Pharmacokinetics (PK)/anti-drug antibodies (ADAs) were examined and related to efficacy/safety findings.

Results: Fourteen patients were included (all male, 49.3 ± 8.7 years, 13.8 ± 7.4-year gout history, pre-therapy SU 9.2 ± 2.5 mg/dL). Three patients were non-responders and discontinued study treatment before 24 weeks, one patient exited the study per protocol at 24 weeks (enrolled prior to treatment extension amendment), and 10 remained in the study through week 52. Of the 10, 8 completed 52 weeks of pegloticase + methotrexate and were 12-month responders. The remaining two discontinued pegloticase + methotrexate at week 24 (met treatment goals) and stayed in the study under observation (allopurinol prescribed at physicians' discretion); one remained a responder at 12 months. At 52 weeks, change from baseline in SU was - 8.2 ± 4.1 mg/dL (SU 1.1 ± 2.4 mg/dL, n = 10). Gout flares were common early in treatment but progressively decreased while on therapy (weeks 1-12, 13/14 [92.9%]; weeks 36-52, 2/8 [25.0%]). One patient recovered from sepsis (serious AE). Two non-responders developed high ADA titers; fewer patients had trough concentrations (Cmin) below the quantitation limit (BQL), and the median Cmin was higher (1.03 µg/mL vs. BQL) than pegloticase monotherapy trials.

Conclusions: Pegloticase + methotrexate co-therapy was well-tolerated over 12 months, with sustained SU lowering, progressive gout flare reduction, and no new safety concerns. Antibody/PK findings suggest methotrexate attenuates ADA formation, coincident with higher treatment response rates.

Trial registration: ClinicalTrials.gov, NCT03635957 . Registered on 17 August 2018.

Keywords: Gout; Methotrexate; Pegloticase; Tophi.

PubMed Disclaimer

Conflict of interest statement

JKB has received research support from Horizon Therapeutics and Radius Health as a study site and principal investigator. He has received consulting/speaker fees > 10 k from Horizon Therapeutics, Celgene, Novartis, and AbbVie. JRPT has served as a consultant/advisory board member for BMS, Janssen, Lilly Pfizer, Sanofi-Genzyme, AbbVie, Aurinia, AstraZeneca, and Samumed/Biosplice. He has served as a speaker for AbbVie, Amgen, BMS, Janssen, Lilly, Pfizer, Sanofi/Genzyme, Aurinia, AstraZeneca, and GlaxoSmithKline. He has received research grants and support from AbbVie, Amgen, BMS, Boehringer Ingelheim, Genentech, Gilead, Horizon Therapeutics, Janssen, Lilly, Pfizer, Vorso, Samumed/Biosplice, Selecta, Exagen, CSL Behring, Organogenesis, SunPharma, DRL, and Emerald. RB declares that there are no competing interests. HMK has received research support from Horizon Therapeutics (study site/investigator), is an advisor and speaker for Horizon Therapeutics, and is an owner and chairman of the Board of Discus Analytics (JoinMan). KO, YS, BL, LZ, YX, and JC are employees of and own stock in Horizon Therapeutics. PMP and SR were employees of Horizon Therapeutics during the study and own stock in Horizon. MEW has received grants from Amgen, Bristol-Myers Squibb, Lilly, and Sanofi. He has received consulting fees greater than US $10,000 from Chemocentryx, Corona, and Genosco and less than US $10,000 from AbbVie, Amgen, Aclaris, Arena, Bayer, Bristol Meyer Squibb, Crescendo Myriad Genetics, GlaxoSmithKline, Gilead Sciences, Horizon Therapeutics, Johnson and Johnson, Eli Lilly, Novartis, Pfizer, Rani Therapeutics, Roche, Samsung, Scipher Medicine, Set Point, Tremeau, and XBiotech; he has stock options in Can-Fite BioPharma, Scipher Medicine, Inmedix, and Vorso and royalties from Elsevier as co-editor for the textbook Rheumatology. JP has received research support from Horizon Therapeutics (study site/investigator). He has also served as an advisor and speaker for Horizon Therapeutics.

Figures

Fig. 1
Fig. 1
Pre-infusion serum urate levels during the methotrexate run-in (4 weeks) and pegloticase + methotrexate treatment (up to 52 weeks) periods. In the 3 non-responders, serum urate (SU) increases above 6 mg/dL were noted at weeks 2 and 4, weeks 4 and 6, and weeks 8 and 10. Data points represent the mean values, and error bars represent standard error (includes patients on treatment, values below the lower limit of detection were set to 0). SU, serum urate
Fig. 2
Fig. 2
Comparison of pegloticase exposure with methotrexate co-treatment in the current study (MIRROR OL) and as monotherapy in prior phase 3 trials. Blue circles represent responders, and red circles represent non-responders. The gray dotted line shows the limit of quantitation (LOQ) of pegloticase measurements (0.6 µg/mL). Data below LOQ (BQL) were imputed as 0.3 µg/mL
Fig. 3
Fig. 3
Comparison of observed pegloticase concentrations in the current study (MIRROR OL, pegloticase + methotrexate co-therapy) and in a simulated PK profile of prior phase 3 trials (pegloticase monotherapy). Circles represent the observed data in MIRROR OL with non-responders in red and responders in blue. Simulated monotherapy pegloticase concentration over time is shown as the median concentration (black line) with 90% confidence intervals (gray-shaded area). The simulation was modeled using the time elapsed from the start of each infusion, pooling data from all 12 infusions administered to phase 3 pivotal trial participants. Values below the limit of quantitation were imputed as 0.3 μg/ml (dotted line)
Fig. 4
Fig. 4
Proportion of patients on treatment experiencing gout flares during the pegloticase + methotrexate treatment period. The mean number of flares during weeks 0–12 and weeks 37–52 was 4.2 ± 2.3 (range 1 − 8) and 2.5 ± 0.7 (range 2 − 3), respectively
Fig. 5
Fig. 5
Liver a, b and renal function c test results through the run-in (weeks − 4 to 0) and treatment (weeks 0 to 52) periods. Week − 4 values were measured prior to methotrexate exposure. Week 0 (day 1) values were measured prior to pegloticase exposure. The number of patients with liver function tests above the upper limits of normal and estimated glomerular filtration rate < 60 mL/min/1.73 m.2 are also shown d. Error bars represent the standard deviation. ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, estimated glomerular filtration rate (calculated from serum creatinine measurements using the MDRD equation)

Similar articles

Cited by

References

    1. Park JJ, Roudier MP, Soman D, Mokadam NA, Simkin PA. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014;4:e005308. - PMC - PubMed
    1. Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J Inflamm Res. 2011;4:39–49. - PMC - PubMed
    1. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the third national health and nurtrition examination survey. Arthritis Care Res (Hoboken) 2007;57:109–115. - PubMed
    1. Pan A, Teng GG, Yuan JM, Koh WP. Bidirectional association between self-reported hypertension and gout: the Singapore Chinese Health Study. PLoS ONE. 2015;10:e0141749. - PMC - PubMed
    1. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231:61–68. - PubMed

Publication types

Associated data