Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 25;14(1):116.
doi: 10.1186/s13195-022-01054-z.

Choroid and choriocapillaris changes in early-stage Parkinson's disease: a swept-source optical coherence tomography angiography-based cross-sectional study

Affiliations

Choroid and choriocapillaris changes in early-stage Parkinson's disease: a swept-source optical coherence tomography angiography-based cross-sectional study

Yifan Zhang et al. Alzheimers Res Ther. .

Abstract

Background: Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the aging population. Previous literature has reported thinning of the retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, and photoreceptor layer in PD patients. However, very few studies have used swept-source optical coherence tomography (SS-OCT) to study the choroid and choriocapillaris vascular changes in PD and their correlations with altered contrast sensitivity.

Methods: PD patients and controls were enrolled in the current study. We used a CSV-1000E instrument to assess contrast sensitivity and performed SS-OCT and SS-OCTA to measure outer retinal thickness, choroidal thickness, choriocapillaris flow density, choroidal vascular volume (CVV), and choroidal vascular index (CVI).

Results: One hundred eyes of 52 PD patients and 200 eyes of 100 healthy controls were recruited in the present study. Our study found remarkably impaired contrast sensitivity in PD patients (all P < 0.05). Significant thinning of the outer retinal layer and the choroid was appreciated in the PD group compared with the healthy controls (all P < 0.05). Choriocapillaris flow density, CVI, and CVV were significantly decreased in PD patients compared with healthy controls (all P < 0.05). Contrast sensitivity was weakly associated with outer retina thickness in the 3 mm circular area, with 3 cycles per degree being the most relevant (r = 0.535, P < 0.001).

Conclusion: Our study indicates that there is a significant decrease in contrast sensitivity, outer retina thickness, choriocapillaris flow density, CVI, and CVV in PD patients. This research has also identified a positive correlation between outer retina thickness and contrast sensitivity.

Keywords: Choriocapillaris; Optical coherence tomography angiography; Parkinson’s disease; Swept-source optical coherence tomography.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
SS-OCTA image of the outer retina. A SLO and en face image of the outer retina. Outer retinal thickness was measured with ETDRS, and thickness data of each area was generated by the built-in measurement tool. B Thickness map of the outer retina. The blue areas indicate thinning in the layer of interests. C The segmentation of the outer retina was marked between the two blue lines
Fig. 2
Fig. 2
SS-OCTA image of the choriocapillaris. A SLO and en face image of the choriocapillaris. B Choriocapillaris flow density was measured with ETDRS. C Choriocapillaris was defined as 20 μm below Bruch’s membrane, and the automatically segmented choriocapillaris was marked between the blue lines. The retinal flow signal is shown in red, and the choroid flow signal was labeled shown in orange
Fig. 3
Fig. 3
SS-OCTA image of the choroid. A SLO and en face image of the choroid. B Choroid flow signal demonstrated in the en face image. C B- scan of the fovea. Haller’s and Sattler’s layer was marked in orange
Fig. 4
Fig. 4
Correlations of contrast sensitivity and outer retinal thickness at 3, 6, 12, and 18 cycles per degree

Similar articles

Cited by

References

    1. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15:1257–1272. doi: 10.1016/S1474-4422(16)30230-7. - DOI - PubMed
    1. Bjornevik K, Schwarzschild MA, Ascherio A. Big health data and Parkinson’s disease epidemiology: challenges and opportunities. Parkinsonism Relat Disord. 2020;71:58–59. doi: 10.1016/j.parkreldis.2020.01.001. - DOI - PubMed
    1. Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrom L, et al. Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and alpha-synuclein mechanisms. Mov Disord. 2019;34:866–875. doi: 10.1002/mds.27659. - DOI - PMC - PubMed
    1. Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol Mech Dis. 2011;6:193–222. doi: 10.1146/annurev-pathol-011110-130242. - DOI - PubMed
    1. Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, et al. Emerging pathways to neurodegeneration: dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother. 2019;111:765–777. doi: 10.1016/j.biopha.2018.12.101. - DOI - PubMed

Publication types