Potential Molecular Targets of Oleanolic Acid in Insulin Resistance and Underlying Oxidative Stress: A Systematic Review
- PMID: 36009236
- PMCID: PMC9404892
- DOI: 10.3390/antiox11081517
Potential Molecular Targets of Oleanolic Acid in Insulin Resistance and Underlying Oxidative Stress: A Systematic Review
Abstract
Oleanolic acid (OA) is a natural triterpene widely found in olive leaves that possesses antioxidant, anti-inflammatory, and insulin-sensitizing properties, among others. These OA characteristics could be of special interest in the treatment and prevention of insulin resistance (IR), but greater in-depth knowledge on the pathways involved in these properties is still needed. We aimed to systematically review the effects of OA on the molecular mechanisms and signaling pathways involved in the development of IR and underlying oxidative stress in insulin-resistant animal models or cell lines. The bibliographic search was carried out on PubMed, Web of Science, Scopus, Cochrane, and CINHAL databases between January 2001 and May 2022. The electronic search produced 5034 articles but, after applying the inclusion criteria, 13 animal studies and 3 cell experiments were identified, using SYRCLE's Risk of Bias for assessing the risk of bias of the animal studies. OA was found to enhance insulin sensitivity and glucose uptake, and was found to suppress the hepatic glucose production, probably by modulating the IRS/PI3K/Akt/FoxO1 signaling pathway and by mitigating oxidative stress through regulating MAPK pathways. Future randomized controlled clinical trials to assess the potential benefit of OA as new therapeutic and preventive strategies for IR are warranted.
Keywords: Olea europaea; bioactive compounds; inflammation; insulin resistance; insulin signaling; oleanolic acid; oxidative stress; pathways; triterpenes; type 2 diabetes mellitus.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- World Health Organization . Seventy-Fourth World Health Assembly. Reducing the Burden of Noncommunicable Diseases through Strengthening Prevention and Control of Diabetes. World Health Organization; Geneva, Switzerland: 2021. pp. 1–6.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
