Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 9;10(8):1613.
doi: 10.3390/microorganisms10081613.

The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy

Affiliations
Review

The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy

Darren Fernandes et al. Microorganisms. .

Abstract

The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.

Keywords: inflammatory bowel disease; microbiome; radiation; radiotherapy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Altered gut bacteria implication in the pathogenesis of IBD. (Taken from Pavel et al., 2021 [38]).

References

    1. Fernandes A., Oliveira A., Soares R., Barata P. The Effects of Ionizing Radiation on Gut Microbiota, a Systematic Review. Nutrients. 2021;13:3025. doi: 10.3390/nu13093025. - DOI - PMC - PubMed
    1. Gill Steven R., Pop M., DeBoy Robert T., Eckburg Paul B., Turnbaugh Peter J., Samuel Buck S., Gordon Jeffrey I., Relman David A., Fraser–Liggett Claire M., Nelson Karen E. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359. doi: 10.1126/science.1124234. - DOI - PMC - PubMed
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414. - DOI - PubMed
    1. Kumagai T., Rahman F., Smith A.M. The Microbiome and Radiation Induced-Bowel Injury: Evidence for Potential Mechanistic Role in Disease Pathogenesis. Nutrients. 2018;10:1405. doi: 10.3390/nu10101405. - DOI - PMC - PubMed
    1. Alatab S., Sepanlou S.G., Ikuta K., Vahedi H., Bisignano C., Safiri S., Sadeghi A., Nixon M.R., Abdoli A., Abolhassani H., et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. - DOI - PMC - PubMed

LinkOut - more resources