Multimodal deep learning model on interim [18F]FDG PET/CT for predicting primary treatment failure in diffuse large B-cell lymphoma
- PMID: 36029345
- DOI: 10.1007/s00330-022-09031-8
Multimodal deep learning model on interim [18F]FDG PET/CT for predicting primary treatment failure in diffuse large B-cell lymphoma
Abstract
Objectives: The prediction of primary treatment failure (PTF) is necessary for patients with diffuse large B-cell lymphoma (DLBCL) since it serves as a prominent means for improving front-line outcomes. Using interim 18F-fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) imaging data, we aimed to construct multimodal deep learning (MDL) models to predict possible PTF in low-risk DLBCL.
Methods: Initially, 205 DLBCL patients undergoing interim [18F]FDG PET/CT scans and the front-line standard of care were included in the primary dataset for model development. Then, 44 other patients were included in the external dataset for generalization evaluation. Based on the powerful backbone of the Conv-LSTM network, we incorporated five different multimodal fusion strategies (pixel intermixing, separate channel, separate branch, quantitative weighting, and hybrid learning) to make full use of PET/CT features and built five corresponding MDL models. Moreover, we found the best model, that is, the hybrid learning model, and optimized it by integrating the contrastive training objective to further improve its prediction performance.
Results: The final model with contrastive objective optimization, named the contrastive hybrid learning model, performed best, with an accuracy of 91.22% and an area under the receiver operating characteristic curve (AUC) of 0.926, in the primary dataset. In the external dataset, its accuracy and AUC remained at 88.64% and 0.925, respectively, indicating its good generalization ability.
Conclusions: The proposed model achieved good performance, validated the predictive value of interim PET/CT, and holds promise for directing individualized clinical treatment.
Key points: • The proposed multimodal models achieved accurate prediction of primary treatment failure in DLBCL patients. • Using an appropriate feature-level fusion strategy can make the same class close to each other regardless of the modal heterogeneity of the data source domain and positively impact the prediction performance. • Deep learning validated the predictive value of interim PET/CT in a way that exceeded human capabilities.
Keywords: Deep learning; Lymphoma; Positron emission tomography/computed tomography; Treatment failure.
© 2022. The Author(s), under exclusive licence to European Society of Radiology.
References
-
- Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249 - DOI
-
- Feugier P, Van Hoof A, Sebban C et al (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23:4117–4126 - DOI
-
- Crump M, Neelapu SS, Farooq U et al (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130(16):1800–1808 - DOI
-
- Gisselbrecht C, Neste EVD (2018) How I manage patients with relapsed/refractory diffuse large B cell lymphoma. Br J Haematol 182:633–643 - DOI
-
- Locke FL, Ghobadi A, Jacobson CA et al (2019) Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 20(1):31–42 - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
