A primer on heme biosynthesis
- PMID: 36029525
- DOI: 10.1515/hsz-2022-0205
A primer on heme biosynthesis
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Keywords: coproporphyrin dependent pathway; heme; mitochondrial heme metabolon; porphyria; protoporphyrin dependent pathway; siroheme dependent pathway.
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Similar articles
-
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.Microbiol Mol Biol Rev. 2017 Jan 25;81(1):e00048-16. doi: 10.1128/MMBR.00048-16. Print 2017 Mar. Microbiol Mol Biol Rev. 2017. PMID: 28123057 Free PMC article. Review.
-
Heme biosynthesis in prokaryotes.Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118861. doi: 10.1016/j.bbamcr.2020.118861. Epub 2020 Sep 23. Biochim Biophys Acta Mol Cell Res. 2021. PMID: 32976912 Review.
-
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2210-5. doi: 10.1073/pnas.1416285112. Epub 2015 Feb 2. Proc Natl Acad Sci U S A. 2015. PMID: 25646457 Free PMC article.
-
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs.J Bacteriol. 2021 Aug 9;203(17):e0011721. doi: 10.1128/JB.00117-21. Epub 2021 Aug 9. J Bacteriol. 2021. PMID: 34124941 Free PMC article.
-
Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1.Cell Mol Life Sci. 2014 Aug;71(15):2837-63. doi: 10.1007/s00018-014-1563-x. Epub 2014 Feb 11. Cell Mol Life Sci. 2014. PMID: 24515122 Free PMC article.
Cited by
-
Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins.Biomolecules. 2023 Apr 17;13(4):683. doi: 10.3390/biom13040683. Biomolecules. 2023. PMID: 37189430 Free PMC article. Review.
-
Xenobiotics Triggering Acute Intermittent Porphyria and Their Effect on Mouse Brain Respiratory Complexes.J Xenobiot. 2024 Feb 27;14(1):308-319. doi: 10.3390/jox14010019. J Xenobiot. 2024. PMID: 38535494 Free PMC article.
-
Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease.Biochemistry. 2024 Jul 2;63(13):1636-1646. doi: 10.1021/acs.biochem.4c00066. Epub 2024 Jun 18. Biochemistry. 2024. PMID: 38888931 Free PMC article.
-
Heme allocation in eukaryotic cells relies on mitochondrial heme export through FLVCR1b to cytosolic GAPDH.Nat Commun. 2025 Aug 26;16(1):7972. doi: 10.1038/s41467-025-62819-2. Nat Commun. 2025. PMID: 40858607 Free PMC article.
-
Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria.Front Microbiol. 2024 Mar 21;15:1345389. doi: 10.3389/fmicb.2024.1345389. eCollection 2024. Front Microbiol. 2024. PMID: 38577681 Free PMC article. Review.
References
-
- Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Hahn, S.M., Hamblin, M.R., Juzeniene, A., Kessel, D., et al.. (2011). Photodynamic therapy of cancer: an update. Ca – Cancer J. Clin. 61: 250–281, https://doi.org/10.3322/caac.20114.
-
- Al-Karadaghi, S., Hansson, M., Nikonov, S., Jonsson, B., and Hederstedt, L. (1997). Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 5: 1501–1510, https://doi.org/10.1016/s0969-2126(97)00299-2.
-
- Astner, I., Schulze, J.O., van den Heuvel, J., Jahn, D., Schubert, W.D., and Heinz, D.W. (2005). Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J. 24: 3166–3177, https://doi.org/10.1038/sj.emboj.7600792.
-
- Bai, Y., Kim, J.Y., Bisunke, B., Jayne, L.A., Silvaroli, J.A., Balzer, M.S., Gandhi, M., Huang, K.M., Sander, V., Prosek, J., et al.. (2021). Kidney toxicity of the BRAF-kinase inhibitor vemurafenib is driven by off-target ferrochelatase inhibition. Kidney Int. 100: 1214–1226, https://doi.org/10.1016/j.kint.2021.08.022.
-
- Bailey, H.J., Bezerra, G.A., Marcero, J.R., Padhi, S., Foster, W.R., Rembeza, E., Roy, A., Bishop, D.F., Desnick, R.J., Bulusu, G., et al.. (2020). Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat. Commun. 11: 2813, https://doi.org/10.1038/s41467-020-16586-x.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources