Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status
- PMID: 36031410
- PMCID: PMC9661847
- DOI: 10.1002/advs.202203115
Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status
Abstract
The oral and upper respiratory tracts are closely linked anatomically and physiologically with the lower respiratory tract and lungs, and the influence of oral and upper respiratory microbes on the lung microbiota is increasingly being recognized. However, the ecological process and individual heterogeneity of the oral and upper respiratory tract microbes shaping the lung microbiota remain unclear owing to the lack of controlled analyses with sufficient sample sizes. Here, the microbiomes of saliva, nasal cavity, oropharyngeal area, and bronchoalveolar lavage samples are profiled and the shaping process of multisource microbes on the lung microbiota is measured. It is found that oral and nasal microbial inputs jointly shape the lung microbiota by occupying different ecological niches. It is also observed that the spread of oral microbes to the lungs is heterogeneous, with more oral microbes entering the lungs being associated with decreased lung function and increased lung proinflammatory cytokines. These results depict the external shaping process of lung microbiota and indicate the great value of oral samples, such as saliva, in monitoring and assessing lung microbiota status in clinical settings.
Keywords: cytokines; lung function; lung microbiota; neutral model; oral microbiota; respiratory microbiome.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial.Respir Res. 2020 May 25;21(1):129. doi: 10.1186/s12931-020-01392-2. Respir Res. 2020. PMID: 32450847 Free PMC article. Clinical Trial.
-
A Preliminary Study of Microbiota Diversity in Saliva and Bronchoalveolar Lavage Fluid from Patients with Primary Bronchogenic Carcinoma.Med Sci Monit. 2019 Apr 17;25:2819-2834. doi: 10.12659/MSM.915332. Med Sci Monit. 2019. PMID: 30994108 Free PMC article.
-
Application of a neutral community model to assess structuring of the human lung microbiome.mBio. 2015 Jan 20;6(1):e02284-14. doi: 10.1128/mBio.02284-14. mBio. 2015. PMID: 25604788 Free PMC article.
-
Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases.Chem Biol Interact. 2019 Sep 1;310:108732. doi: 10.1016/j.cbi.2019.108732. Epub 2019 Jul 2. Chem Biol Interact. 2019. PMID: 31276660 Review.
-
The hidden link: How oral and respiratory microbiomes affect multiple sclerosis.Mult Scler Relat Disord. 2024 Aug;88:105742. doi: 10.1016/j.msard.2024.105742. Epub 2024 Jun 21. Mult Scler Relat Disord. 2024. PMID: 38964239 Review.
Cited by
-
Role of nasal microbiota in regulating host anti-influenza immunity in dogs.Microbiome. 2025 Jan 27;13(1):27. doi: 10.1186/s40168-025-02031-y. Microbiome. 2025. PMID: 39871363 Free PMC article.
-
Dysbiosis associated with enhanced microbial mobility across the respiratory tract in pulmonary tuberculosis patients.BMC Microbiol. 2025 Aug 12;25(1):499. doi: 10.1186/s12866-025-04206-x. BMC Microbiol. 2025. PMID: 40790469 Free PMC article.
-
Periodontitis exacerbates pulmonary hypertension by promoting IFNγ+ T cell infiltration in mice.Int J Oral Sci. 2024 Mar 28;16(1):27. doi: 10.1038/s41368-024-00291-2. Int J Oral Sci. 2024. PMID: 38548721 Free PMC article.
-
Respiratory microbiota, host immunity, respiratory viral infections and malignant tumors.Front Microbiol. 2025 Jul 10;16:1626077. doi: 10.3389/fmicb.2025.1626077. eCollection 2025. Front Microbiol. 2025. PMID: 40718812 Free PMC article. Review.
-
The spatial dissimilarities and connections of the microbiota in the upper and lower respiratory tract of beef cattle.Front Cell Infect Microbiol. 2023 Nov 6;13:1269726. doi: 10.3389/fcimb.2023.1269726. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 38029262 Free PMC article.
References
-
- Pattaroni C., Watzenboeck M. L., Schneidegger S., Kieser S., Wong N. C., Bernasconi E., Pernot J., Mercier L., Knapp S., Nicod L. P., Marsland C. P., Roth‐Kleiner M., Marsland B. J., Cell Host Microbe 2018, 24, 857. - PubMed
-
- Morris A., Beck J. M., Schloss P. D., Campbell T. B., Crothers K., Curtis J. L., Flores S. C., Fontenot A. P., Ghedin E., Huang L., Jablonski K., Kleerup E., Lynch S. V., Sodergren E., Twigg H., Young V. B., Bassis C. M., Venkataraman A., Schmidt T. M., Weinstock G. M., Am J. Respir. Crit. Care Med. 2013, 187, 1067. - PMC - PubMed
-
- Wypych T. P., Wickramasinghe L. C., Marsland B. J., Nat. Immunol. 2019, 20, 1279. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources