Decontamination of Bacillus anthracis Spores at Subzero Temperatures by Complete Submersion
- PMID: 36033960
- PMCID: PMC8869638
- DOI: 10.1089/apb.20.0067
Decontamination of Bacillus anthracis Spores at Subzero Temperatures by Complete Submersion
Abstract
Introduction: Bacillus anthracis, the etiological agent of anthrax, produces long-lived spores, which are resistant to heat, cold, pH, desiccation, and chemical agents. The spores maintain their ability to produce viable bacteria even after decades, and when inhaled can cause fatal disease in over half of the clinical cases. Owing to these characteristics, anthrax has been repeatedly selected for both bioweapon and bioterrorism use. In the event of a bioterrorism attack, surfaces in the vicinity of the attack will be contaminated, and recovering from such an event requires rapid and effective decontamination. Previous decontamination method development has focused mainly on temperatures >0°C, and have shown poor efficacy at subzero temperatures. Methods: In this study, we demonstrate the use of calcium chloride (CaCl2) as a freezing point depression agent for pH-adjusted sodium hypochlorite (NaOCl) for the effective and rapid decontamination of B. anthracis Sterne strain spores at subzero temperatures. Results: We show the complete decontamination of 106 B. anthracis Sterne strain spores at temperatures as low as -20°C within 2.5 min by submersion in solution containing 25% (w/v) CaCl2, 0.50% NaOCl, and 0.40% (v/v) acetic acid. We also demonstrate significant reduction in number of spores at -28°C. Conclusions: The results show promise for rapidly decontaminating equipment and materials used in the response to bioterrorism events using readily available consumer chemicals. Future study should examine the efficacy of these results on complex surfaces.
Keywords: anthrax; bioterrorism; calcium chloride; decontamination; subzero.
Copyright 2021, ABSA International 2021.
Conflict of interest statement
No competing financial interests exist.
Figures





References
-
- Pilo P, Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect Genet Evol. 2018;64:115–125. - PubMed
-
- Carlson CJ, Getz WM, Kausrud KL, et al. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev. 2018;93(4):1813–1831. - PubMed
-
- Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J. Gastrointestinal anthrax: review of the literature. Arch Intern Med. 2003;163(20):2527–2531. - PubMed
-
- Hong T, Gurian PL, Ward NFD. Setting risk-informed environmental standards for Bacillus anthracis spores. Risk Anal. 2010;30(10):1602–1622. - PubMed
LinkOut - more resources
Full Text Sources