Harnessing the Metal-Insulator Transition of VO2 in Neuromorphic Computing
- PMID: 36036767
- DOI: 10.1002/adma.202205294
Harnessing the Metal-Insulator Transition of VO2 in Neuromorphic Computing
Abstract
Future-generation neuromorphic computing seeks to overcome the limitations of von Neumann architectures by colocating logic and memory functions, thereby emulating the function of neurons and synapses in the human brain. Despite remarkable demonstrations of high-fidelity neuronal emulation, the predictive design of neuromorphic circuits starting from knowledge of material transformations remains challenging. VO2 is an attractive candidate since it manifests a near-room-temperature, discontinuous, and hysteretic metal-insulator transition. The transition provides a nonlinear dynamical response to input signals, as needed to construct neuronal circuit elements. Strategies for tuning the transformation characteristics of VO2 based on modification of material properties, interfacial structure, and field couplings, are discussed. Dynamical modulation of transformation characteristics through in situ processing is discussed as a means of imbuing synaptic function. Mechanistic understanding of site-selective modification; external, epitaxial, and chemical strain; defect dynamics; and interfacial field coupling in modifying local atomistic structure, the implications therein for electronic structure, and ultimately, the tuning of transformation characteristics, is emphasized. Opportunities are highlighted for inverse design and for using design principles related to thermodynamics and kinetics of electronic transitions learned from VO2 to inform the design of new Mott materials, as well as to go beyond energy-efficient computation to manifest intelligence.
Keywords: Mott transition; doping; electronic structures; metal-insulator transition; neuromorphic computing; phase transition; vanadium dioxide.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO2.J Am Chem Soc. 2020 Sep 9;142(36):15513-15526. doi: 10.1021/jacs.0c07152. Epub 2020 Aug 27. J Am Chem Soc. 2020. PMID: 32786743
-
Quantum imaging of the reconfigurable VO2 synaptic electronics for neuromorphic computing.Sci Adv. 2023 Oct 6;9(40):eadg9376. doi: 10.1126/sciadv.adg9376. Epub 2023 Oct 4. Sci Adv. 2023. PMID: 37792938 Free PMC article.
-
Operando characterization of conductive filaments during resistive switching in Mott VO2.Proc Natl Acad Sci U S A. 2021 Mar 2;118(9):e2013676118. doi: 10.1073/pnas.2013676118. Proc Natl Acad Sci U S A. 2021. PMID: 33622788 Free PMC article.
-
Complex Oxides for Brain-Inspired Computing: A Review.Adv Mater. 2023 Sep;35(37):e2203352. doi: 10.1002/adma.202203352. Epub 2022 Nov 30. Adv Mater. 2023. PMID: 35723973 Review.
-
Chemical Modulation of Metal-Insulator Transition toward Multifunctional Applications in Vanadium Dioxide Nanostructures.Small. 2023 Nov;19(44):e2305234. doi: 10.1002/smll.202305234. Epub 2023 Jul 2. Small. 2023. PMID: 37394705 Review.
Cited by
-
Atomistic Origins of Conductance Switching in an ε-Cu0.9V2O5 Neuromorphic Single Crystal Oscillator.J Am Chem Soc. 2024 Dec 18;146(50):34536-34550. doi: 10.1021/jacs.4c11968. Epub 2024 Dec 4. J Am Chem Soc. 2024. PMID: 39630440 Free PMC article.
-
Electrical Control of Magnetic Resonance in Phase Change Materials.Nano Lett. 2024 Sep 18;24(37):11476-11481. doi: 10.1021/acs.nanolett.4c02697. Epub 2024 Sep 4. Nano Lett. 2024. PMID: 39231136 Free PMC article.
-
Effect of Stereochemically Active Electron Lone Pairs on Magnetic Ordering in Trivanadates.Inorg Chem. 2023 Aug 14;62(32):12965-12975. doi: 10.1021/acs.inorgchem.3c01760. Epub 2023 Aug 2. Inorg Chem. 2023. PMID: 37531196 Free PMC article.
-
Emerging memristive neurons for neuromorphic computing and sensing.Sci Technol Adv Mater. 2023 Apr 19;24(1):2188878. doi: 10.1080/14686996.2023.2188878. eCollection 2023. Sci Technol Adv Mater. 2023. PMID: 37090846 Free PMC article. Review.
-
Piezo strain-controlled phase transition in single-crystalline Mott switches for threshold-manipulated leaky integrate-and-fire neurons.Sci Adv. 2024 Apr 5;10(14):eadk8836. doi: 10.1126/sciadv.adk8836. Epub 2024 Apr 5. Sci Adv. 2024. PMID: 38578998 Free PMC article.
References
-
- R. Vinuesa, H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, A. Felländer, S. D. Langhans, M. Tegmark, F. F. Nerini, Nat. Commun. 2020, 11, 233.
-
- N. C. Thompson, K. Greenewald, K. Lee, G. F. Manso, IEEE SpectrumSeptember 2021.
-
- R. Roscher, B. Bohn, M. F. Duarte, J. Garcke, IEEE Access 2020, 8, 42200.
-
- Cisco, Global Cloud Index: Forecast and Methodology, 2018.
-
- E. Masanet, A. Shehabi, N. Lei, S. Smith, J. Koomey, Science 2020, 367, 984.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources