Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022;70(9):599-604.
doi: 10.1248/cpb.c22-00049.

Chiral Bifunctional Selenide Catalysts for Asymmetric Iodolactonizations

Affiliations
Free article

Chiral Bifunctional Selenide Catalysts for Asymmetric Iodolactonizations

Ryuichi Nishiyori et al. Chem Pharm Bull (Tokyo). 2022.
Free article

Abstract

1,1'-Bi-2-naphthol (BINOL)-derived chiral bifunctional sulfide and selenide catalysts that possess a hydroxy group are known to be effective catalysts for enantioselective bromolactonizations. When applied to asymmetric iodolactonizations of 4-pentenoic acids, these catalysts yield chiral γ-butyrolactone products that are important compounds in medicinal chemistry. Although chiral bifunctional selenides have shown good catalytic performances in enantioselective iodolactonizations, reactions with BINOL-derived chiral sulfide catalysts unexpectedly gave iodolactonization products in nearly racemic forms. The roles of chalcogenide moieties and hydroxy groups on bifunctional catalysts were investigated, and the importance of both a selenide moiety and a hydroxy group on chiral bifunctional selenide catalysts to achieve enantioselective iodolactonizations was clarified. An optimized chiral bifunctional selenide catalyst was applied to the asymmetric synthesis of chiral γ-butyrolactones and phthalides. Furthermore, the utility of chiral bifunctional selenides was also demonstrated in the catalytic enantioselective desymmetrizing iodolactonization of α,α-diallyl carboxylic acids.

Keywords: asymmetric catalysis; halogenation; lactone; organocatalysis; selenium.

PubMed Disclaimer