uFLIM - Unsupervised analysis of FLIM-FRET microscopy data
- PMID: 36049452
- DOI: 10.1016/j.media.2022.102579
uFLIM - Unsupervised analysis of FLIM-FRET microscopy data
Abstract
Despite their widespread use in cell biology, fluorescence lifetime imaging microscopy (FLIM) data-sets are challenging to analyse, because each spatial position can contain a superposition of multiple fluorescent components. Here, we present a data analysis method employing all information in the available photon budget, as well as being fast. The method, called uFLIM, determines spatial distributions and temporal dynamics of multiple fluorescent components with no prior knowledge. It goes significantly beyond current approaches which either assume the functional dependence of the dynamics, e.g. an exponential decay, or require dynamics to be known, or calibrated. Its efficient non-negative matrix factorization algorithm allows for real-time data processing. We validate in silico that uFLIM is capable to disentangle the spatial distribution and spectral properties of five fluorescing probes, from only two excitation and detection channels and a photon budget of 100 detected photons per pixel. By adapting the method to data exhibiting Förster resonant energy transfer (FRET), we retrieve the spatial and transfer rate distribution of the bound species, without constrains on donor and acceptor dynamics.
Keywords: Fluorescence lifetime imaging; Förster resonant energy transfer; Non-negative matrix factorization.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources