Cationic Covalent Organic Polymer Thin Film for Label-free Electrochemical Bacterial Cell Detection
- PMID: 36053557
- PMCID: PMC9513792
- DOI: 10.1021/acssensors.2c01292
Cationic Covalent Organic Polymer Thin Film for Label-free Electrochemical Bacterial Cell Detection
Abstract
Numerous species of bacteria pose a serious threat to human health and cause several million deaths annually. It is therefore essential to have quick, efficient, and easily operable methods of bacterial cell detection. Herein, we synthesize a novel cationic covalent organic polymer (COP) named CATN through the Menshutkin reaction and evaluate its potential as an impedance sensor for Escherichia coli cells. On account of its positive surface charge (ζ-potential = +21.0 mV) and pyridinium moieties, CATN is expected to interact favorably with bacteria that possess a negatively charged cell surface through electrostatic interactions. The interdigitated electrode arrays were coated with CATN using a simple yet non-traditional method of electrophoresis and then used in two-electrode electrochemical impedance spectroscopy (EIS) measurements. The impedance response showed a linear relationship with the increasing concentration of E. coli. The system was sensitive to bacterial concentrations as low as ∼30 CFU mL-1, which is far below the concentration considered to cause illnesses. The calculated limit of detection was as low as 2 CFU mL-1. This work is a rare example of a COP used in this type of bacteria sensing and is anticipated to stimulate further interest in the synthesis of organic polymers for EIS-based sensors.
Keywords: E. coli; covalent organic polymers; detection; electrochemical impedance spectroscopy; electrophoresis.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




References
-
- Cassini A.; Högberg L. D.; Plachouras D.; Quattrocchi A.; Hoxha A.; Simonsen G. S.; Colomb-Cotinat M.; Kretzschmar M. E.; Devleesschauwer B.; Cecchini M.; Ouakrim D. A.; Oliveira T. C.; Struelens M. J.; Suetens C.; Monnet D. L.; Strauss R.; Mertens K.; Struyf T.; Catry B.; Latour K.; Ivanov I. N.; Dobreva E. G.; Tambic Andraševic A.; Soprek S.; Budimir A.; Paphitou N.; Žemlicková H.; Schytte Olsen S.; Wolff Sönksen U.; Märtin P.; Ivanova M.; Lyytikäinen O.; Jalava J.; Coignard B.; Eckmanns T.; Abu Sin M.; Haller S.; Daikos G. L.; Gikas A.; Tsiodras S.; Kontopidou F.; Tóth Á.; Hajdu Á.; Guólaugsson Ó.; Kristinsson K. G.; Murchan S.; Burns K.; Pezzotti P.; Gagliotti C.; Dumpis U.; Liuimiene A.; Perrin M.; Borg M. A.; de Greeff S. C.; Monen J. C.; Koek M. B.; Elstrøm P.; Zabicka D.; Deptula A.; Hryniewicz W.; Caniça M.; Nogueira P. J.; Fernandes P. A.; Manageiro V.; Popescu G. A.; Serban R. I.; Schréterová E.; Litvová S.; Štefkovicová M.; Kolman J.; Klavs I.; Korošec A.; Aracil B.; Asensio A.; Pérez-Vázquez M.; Billström H.; Larsson S.; Reilly J. S.; Johnson A.; Hopkins S. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. 10.1016/s1473-3099(18)30605-4. - DOI - PMC - PubMed
-
- Zhou F.; Yu T.; Du R.; Fan G.; Liu Y.; Liu Z.; Xiang J.; Wang Y.; Song B.; Gu X.; Guan L.; Wei Y.; Li H.; Wu X.; Xu J.; Tu S.; Zhang Y.; Chen H.; Cao B. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. 10.1016/s0140-6736(20)30566-3. - DOI - PMC - PubMed
-
- Roy S.; Arshad F.; Eissa S.; Safavieh M.; Alattas S. G.; Ahmed M. U.; Zourob M. Recent Developments towards Portable Point-of-Care Diagnostic Devices for Pathogen Detection. Sens. Diagn. 2022, 1, 87–105. 10.1039/d1sd00017a. - DOI
-
- Brosel-Oliu S.; Uria N.; Abramova N.; Bratov A.. Impedimetric Sensors for Bacteria Detection. Biosensors-Micro and Nanoscale Applications; IntechOpen London, 2015; pp 257–288.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources