Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 19;129(8):080401.
doi: 10.1103/PhysRevLett.129.080401.

Search for Spontaneous Radiation from Wave Function Collapse in the Majorana Demonstrator

Affiliations
Free article

Search for Spontaneous Radiation from Wave Function Collapse in the Majorana Demonstrator

I J Arnquist et al. Phys Rev Lett. .
Free article

Erratum in

  • Erratum: Search for Spontaneous Radiation from Wave Function Collapse in the Majorana Demonstrator [Phys. Rev. Lett. 129, 080401 (2022)].
    Arnquist IJ, Avignone FT, Barabash AS, Barton CJ, Bhimani KH, Blalock E, Bos B, Busch M, Buuck M, Caldwell TS, Chan YD, Christofferson CD, Chu PH, Clark ML, Cuesta C, Detwiler JA, Efremenko Y, Ejiri H, Elliott SR, Giovanetti GK, Green MP, Gruszko J, Guinn IS, Guiseppe VE, Haufe CR, Henning R, Hervas Aguilar D, Hoppe EW, Hostiuc A, Kim I, Kouzes RT, Lannen V TE, Li A, Lopez AM, López-Castaño JM, Martin EL, Martin RD, Massarczyk R, Meijer SJ, Oli TK, Othman G, Paudel LS, Pettus W, Poon AWP, Radford DC, Reine AL, Rielage K, Ruof NW, Tedeschi D, Varner RL, Vasilyev S, Wilkerson JF, Wiseman C, Xu W, Yu CH, Zhu BX; <span class="sc">Majorana</span> Collaboration. Arnquist IJ, et al. Phys Rev Lett. 2023 Jun 9;130(23):239902. doi: 10.1103/PhysRevLett.130.239902. Phys Rev Lett. 2023. PMID: 37354428

Abstract

The Majorana Demonstrator neutrinoless double-beta decay experiment comprises a 44 kg (30 kg enriched in ^{76}Ge) array of p-type, point-contact germanium detectors. With its unprecedented energy resolution and ultralow backgrounds, Majorana also searches for rare event signatures from beyond standard model physics in the low energy region below 100 keV. In this Letter, we test the continuous spontaneous localization (CSL) model, one of the mathematically well-motivated wave function collapse models aimed at solving the long-standing unresolved quantum mechanical measurement problem. While the CSL predicts the existence of a detectable radiation signature in the x-ray domain, we find no evidence of such radiation in the 19-100 keV range in a 37.5 kg-y enriched germanium exposure collected between December 31, 2015, and November 27, 2019, with the Demonstrator. We explored both the non-mass-proportional (n-m-p) and the mass-proportional (m-p) versions of the CSL with two different assumptions: that only the quasifree electrons can emit the x-ray radiation and that the nucleus can coherently emit an amplified radiation. In all cases, we set the most stringent upper limit to date for the white CSL model on the collapse rate, λ, providing a factor of 40-100 improvement in sensitivity over comparable searches. Our limit is the most stringent for large parts of the allowed parameter space. If the result is interpreted in terms of the Diòsi-Penrose gravitational wave function collapse model, the lower bound with a 95% confidence level is almost an order of magnitude improvement over the previous best limit.

PubMed Disclaimer