Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 14;144(36):16535-16544.
doi: 10.1021/jacs.2c05882. Epub 2022 Sep 2.

Radical Activation of N-H and O-H Bonds at Bismuth(II)

Affiliations

Radical Activation of N-H and O-H Bonds at Bismuth(II)

Xiuxiu Yang et al. J Am Chem Soc. .

Abstract

The development of unconventional strategies for the activation of ammonia (NH3) and water (H2O) is of capital importance for the advancement of sustainable chemical strategies. Herein we provide the synthesis and characterization of a radical equilibrium complex based on bismuth featuring an extremely weak Bi-O bond, which permits the in situ generation of reactive Bi(II) species. The ensuing organobismuth(II) engages with various amines and alcohols and exerts an unprecedented effect onto the X-H bond, leading to low BDFEX-H. As a result, radical activation of various N-H and O-H bonds─including ammonia and water─occurs in seconds at room temperature, delivering well-defined Bi(III)-amido and -alkoxy complexes. Moreover, we demonstrate that the resulting Bi(III)-N complexes engage in a unique reactivity pattern with the triad of H+, H-, and H sources, thus providing alternative pathways for main group chemistry.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Overview of N–H and O–H activation modes. (a) State-of-the-art modes for X–H activation by transition metals and main group elements; example of amines. TM, transition metal; MG, main group element. (b) Bond weakening of N–H and O–H by coordinating to transition metal complexes. (c) Top: reversible homolysis of MG–X single bond in radical equilibrium complex (REC). Bottom: an example of a Bi REC (right). (d) This work: activation of N–H and O–H by a Bi–O REC complex, and reactivity of the new Bi–amido compounds. TM: transition metal; MG: main group element.
Figure 2
Figure 2
Synthesis and characterization of a bismuth radical equilibrium complex. (a) Synthesis of complex 4. (b) Solid-state structure of 4, illustrated using 30% probability ellipsoids except hydrogen atoms. Solvents, hydrogen atoms, and disordered parts have been omitted for clarity, except those on C8. (c) Top: (blue line) EPR spectrum of complex 4 (after dissociation) at 25 °C, showing the presence of 2; (red line) spectral simulation of 2. Parameters: g = 2.00854, 2×1H-Aiso = 4.76 MHz, 9×1H-Aiso = 1.04 MHz, 18×1H-Aiso = 0.2 MHz. Bottom: van’t Hoff plot of 4 in PhMe between −30 and 20 °C. (d) Computational analysis of the Bi–O bond cleavage: potential energy profiles of the Bi–O bond dissociation of 4 at (ZORA) PBE0-D3/Def2-TZVP (SMD:Toluene) level of theory. Black and red color denote singlet (heterolytic bond cleavage) and triplet (homolytic bond cleavage) potential energy surface, respectively. Frontier molecular orbitals both in singlet (a,c) and triplet states (b,d) are plotted at equilibrium (left panel) and dissociated (right panel) geometries.
Figure 3
Figure 3
Activation of O–H and N–H bonds: synthesis of 7, 9, 11, 13, 15, 17 (top), and solid-state structure of 15 (bottom, left) and 17 (bottom, right), illustrated using 30% probability ellipsoids except hydrogen atoms. Solvents, hydrogen atoms, except those on C8 and N3 in 15 and 17, and disordered parts have been omitted for clarity. All yields are of isolated pure material.
Scheme 1
Scheme 1. Reactivity of Bismuth(III) Amido Complexes 15 and 17 with H+, H, and H Sources
Ar = 2,6-diphenylphenyl.
Figure 4
Figure 4
Mechanistic investigations. (a) Deuterium labeling experiments at various temperatures. (b) Computational analysis of the mechanism of the radical activation of N–H bond in ammonia. Computed free energy (ΔG, in kcal·mol–1) profile for the N–H bond cleavage of NH3 by 5/OAr pair. Relative free energies (in kcal·mol–1) are computed based on (ZORA) PBE0-D3/Def2-TZVP (SMD:Toluene) single point energies, and gas-phase free energies corrections at 298.15 K obtained at the (ZORA) BP86-D3/Def2-TZVP level of theory. (c) Calculated BDFE of N–H and O–H bonds after coordination with Bi(II). OAr* = 2,4,6-(tBu)3C6H2O.

References

    1. Smil V. Detonator of the population explosion.. Nature 1999, 400, 415–415. 10.1038/22672. - DOI
    2. Lewis N. S.; Nocera D. G. Powering the planet: chemical challenges in solar energy utilization.. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729–15735. 10.1073/pnas.0603395103. - DOI - PMC - PubMed
    1. Service R. F.Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon. Science, 2018. https://www.science.org/content/article/ammonia-renewable-fuel-made-sun-... (accessed on August 19, 2022).
    2. Tullo A. H.Is ammonia the fuel of the future? Chem. Eng. News, 2021; Vol. 99. https://cen.acs.org/business/petrochemicals/ammonia-fuel-future/99/i8 (accessed on September 2, 2022).
    3. Kim T. W.; Choi K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.. Science 2014, 343, 990–994. 10.1126/science.1246913. - DOI - PubMed
    1. Agarwal R. G.; Coste S. C.; Groff B. D.; Heuer A. M.; Noh H.; Parada G. A.; Wise C. F.; Nichols E. M.; Warren J. J.; Mayer J. M. Free energies of proton-coupled electron transfer reagents and their applications.. Chem. Rev. 2022, 122, 1–49. 10.1021/acs.chemrev.1c00521. - DOI - PMC - PubMed
    1. Zhao J.; Goldman A. S.; Hartwig J. F. Oxidative addition of ammonia to form a stable monomeric amido hydride complex.. Science 2005, 307, 1080–1082. 10.1126/science.1109389. - DOI - PubMed
    2. Frey G. D.; Lavallo V.; Donnadieu B.; Schoeller W. W.; Bertrand G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center.. Science 2007, 316, 439–441. 10.1126/science.1141474. - DOI - PubMed
    3. Klahn M.; Beweries T. Organometallic water splitting – from coordination chemistry to catalysis.. Rev. Inorg. Chem. 2014, 34, 177–198. 10.1515/revic-2013-0019. - DOI
    4. Robinson T. P.; De Rosa D. M.; Aldridge S.; Goicoechea J. M. E–H bond activation of ammonia and water by a geometrically constrained phosphorus(III) compound.. Angew. Chem., Int. Ed. 2015, 54, 13758–13763. 10.1002/anie.201506998. - DOI - PMC - PubMed
    5. Protchenko A. V.; Bates J. I.; Saleh L. M. A.; Blake M. P.; Schwarz A. D.; Kolychev E. L.; Thompson A. L.; Jones C.; Mountford P.; Aldridge S. Enabling and probing oxidative addition and reductive elimination at a group 14 metal center: cleavage and functionalization of E–H bonds by a bis(boryl)stannylene.. J. Am. Chem. Soc. 2016, 138, 4555–4564. 10.1021/jacs.6b00710. - DOI - PubMed
    6. Peng Y.; Guo J.-D.; Ellis B. D.; Zhu Z.; Fettinger J. C.; Nagase S.; Power P. P. Reaction of hydrogen or ammonia with unsaturated germanium or tin molecules under ambient conditions: oxidative addition versus arene elimination.. J. Am. Chem. Soc. 2009, 131, 16272–16282. 10.1021/ja9068408. - DOI - PubMed
    7. Morgan E.; MacLean D. F.; McDonald R.; Turculet L. Rhodium and iridium amido complexes supported by silyl pincer ligation: ammonia N–H bond activation by a [PSiP]Ir Complex.. J. Am. Chem. Soc. 2009, 131, 14234–14236. 10.1021/ja906646v. - DOI - PubMed
    8. Jana A.; Schulzke C.; Roesky H. W. Oxidative addition of ammonia at a silicon(II) center and an unprecedented hydrogenation reaction of compounds with low-valent group 14 elements using ammonia borane.. J. Am. Chem. Soc. 2009, 131, 4600–4601. 10.1021/ja900880z. - DOI - PubMed
    1. Gutsulyak D. V.; Piers W. E.; Borau-Garcia J.; Parvez M. Activation of water, ammonia, and other small molecules by PCcarbeneP nickel pincer complexes.. J. Am. Chem. Soc. 2013, 135, 11776–11779. 10.1021/ja406742n. - DOI - PubMed
    2. Abbenseth J.; Townrow O. P. E.; Goicoechea J. M. Thermoneutral N–H bond activation of ammonia by a geometrically constrained phosphine.. Angew. Chem., Int. Ed. 2021, 60, 23625–23629. 10.1002/anie.202111017. - DOI - PMC - PubMed
    3. Meltzer A.; Inoue S.; Präsang C.; Driess M. Steering S–H and N–H bond activation by a stable N-Heterocyclic silylene: different addition of H2S, NH3, and organoamines on a silicon(II) ligand versus its Si(II)→Ni(CO)3 complex.. J. Am. Chem. Soc. 2010, 132, 3038–3046. 10.1021/ja910305p. - DOI - PubMed
    4. Kimura T.; Koiso N.; Ishiwata K.; Kuwata S.; Ikariya T. H–H and N–H bond cleavage of dihydrogen and ammonia with a bifunctional parent imido (NH)-bridged diiridium complex.. J. Am. Chem. Soc. 2011, 133, 8880–8883. 10.1021/ja203538b. - DOI - PubMed
    5. Khaskin E.; Iron M. A.; Shimon L. J. W.; Zhang J.; Milstein D. N–H activation of amines and ammonia by Ru via metal–ligand cooperation.. J. Am. Chem. Soc. 2010, 132, 8542–8543. 10.1021/ja103130u. - DOI - PubMed
    6. Cui J.; Li Y.; Ganguly R.; Inthirarajah A.; Hirao H.; Kinjo R. Metal-free σ-bond metathesis in ammonia activation by a diazadiphosphapentalene.. J. Am. Chem. Soc. 2014, 136, 16764–16767. 10.1021/ja509963m. - DOI - PubMed
    7. Chang Y.-H.; Nakajima Y.; Tanaka H.; Yoshizawa K.; Ozawa F. Facile N–H bond cleavage of ammonia by an iridium complex bearing a noninnocent PNP-pincer type phosphaalkene ligand.. J. Am. Chem. Soc. 2013, 135, 11791–11794. 10.1021/ja407163z. - DOI - PubMed
    8. Brown R. M.; Borau Garcia J.; Valjus J.; Roberts C. J.; Tuononen H. M.; Parvez M.; Roesler R. Ammonia activation by a nickel NCN-pincer complex featuring a non-innocent N-Heterocyclic Carbene: ammine and amido complexes in equilibrium.. Angew.Chem. Int. Ed. 2015, 54, 6274–6277. 10.1002/anie.201500453. - DOI - PubMed
    9. McCarthy S. M.; Lin Y.-C.; Devarajan D.; Chang J. W.; Yennawar H. P.; Rioux R. M.; Ess D. H.; Radosevich A. T. Intermolecular N–H Oxidative addition of ammonia, alkylamines, and arylamines to a planar σ3-phosphorus compound via an entropy-controlled electrophilic mechanism.. J. Am. Chem. Soc. 2014, 136, 4640–4650. 10.1021/ja412469e. - DOI - PubMed

Publication types