Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;34(43):e2204733.
doi: 10.1002/adma.202204733. Epub 2022 Sep 23.

An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy

Affiliations

An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy

Yuzhi Xu et al. Adv Mater. 2022 Oct.

Erratum in

Abstract

Cuproptosis, a newly identified form of regulated cell death that is copper-dependent, offers great opportunities for exploring the use of copper-based nanomaterials inducing cuproptosis for cancer treatment. Here, a glucose oxidase (GOx)-engineered nonporous copper(I) 1,2,4-triazolate ([Cu(tz)]) coordination polymer (CP) nanoplatform, denoted as GOx@[Cu(tz)], for starvation-augmented cuproptosis and photodynamic synergistic therapy is developed. Importantly, the catalytic activity of GOx is shielded in the nonporous scaffold but can be "turned on" for efficient glucose depletion only upon glutathione (GSH) stimulation in cancer cells, thereby proceeding cancer starvation therapy. The depletion of glucose and GSH sensitizes cancer cells to the GOx@[Cu(tz)]-mediated cuproptosis, producing aggregation of lipoylated mitochondrial proteins, the target of copper-induced toxicity. The increased intracellular hydrogen peroxide (H2 O2 ) levels, due to the oxidation of glucose, activates the type I photodynamic therapy (PDT) efficacy of GOx@[Cu(tz)]. The in vivo experimental results indicate that GOx@[Cu(tz)] produces negligible systemic toxicity and inhibits tumor growth by 92.4% in athymic mice bearing 5637 bladder tumors. This is thought to be the first report of a cupreous nanomaterial capable of inducing cuproptosis and cuproptosis-based synergistic therapy in bladder cancer, which should invigorate studies pursuing rational design of efficacious cancer therapy strategies based on cuproptosis.

Keywords: coordination polymers; cuproptosis; glucose oxidase; photodynamic therapy; starvation therapy.

PubMed Disclaimer

References

    1. P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma, M. Abdusamad, J. Rossen, L. Joesch-Cohen, R. Humeidi, D. Spangler Ryan, K. Eaton John, E. Frenkel, M. Kocak, M. Corsello Steven, S. Lutsenko, N. Kanarek, S. Santagata, R. Golub Todd, Science 2022, 375, 1254.
    1. S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S. Yang, B. Morrison, III, B. R. Stockwell, Cell 2012, 149, 1060.
    1. P. Tsvetkov, A. Detappe, K. Cai, H. R. Keys, Z. Brune, W. Ying, P. Thiru, M. Reidy, G. Kugener, J. Rossen, M. Kocak, N. Kory, A. Tsherniak, S. Santagata, L. Whitesell, I. M. Ghobrial, J. L. Markley, S. Lindquist, T. R. Golub, Nat. Chem. Biol. 2019, 15, 681.
    1. A. Kahlson Martha, J. Dixon Scott, Science 2022, 375, 1231.
    1. a) O. Warburg, Science 1956, 123, 309;

LinkOut - more resources