Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 30;43(9).
doi: 10.1088/1361-6579/ac8f12.

Ensemble classification combining ResNet and handcrafted features with three-steps training

Affiliations

Ensemble classification combining ResNet and handcrafted features with three-steps training

Guadalupe Garcia-Isla et al. Physiol Meas. .

Abstract

Objective.This work presents an ECG classifier for variable leads as a contribution to the Computing in Cardiology Challenge/CinC Challenge 2021. It aims to integrate deep and classic machine learning features into a single model, exploring the proper structure and training procedure.Approach.From the initial 88 253 signals, only 84 210 were included. Low quality and unscored recordings were excluded. Three different database subsets of 40 365 recording each were created by dividing in three normal sinus rhythm and sinus bradycardia recordings. Each subset was used to train a different model with shared architecture integrated as an ensemble to provide the final classification through major voting. Models contained a deep branch composed of a modified ResNet with dilation convolutional layers and squeeze and excitation Block that took as input windowed ECG signals. This was concatenated with a wide branch that integrated 20 cardiac rhythm features into a fully connected 3-layered network. Three different training steps were studied: just the deep branch (D), wide integration and training (D+W), and a final fine tuning of the deep branch posterior to wide training (D+W+D).Main Results.Results obtained in a local test set formed by a stratified 12.5% split of the given full dataset were presented for 2-lead and 12-lead models. The best training method was the 3-step D + W + D procedure obtaining a challenge metric of 0.709 and 0.677 for 12 and 2-lead models respectively.Significance.Integration of handcrafted features and deep learning model not only may increase the generalization capacity of the network but also provide a path to add explicit information into the classification decision process. To the best of our knowledge this is the first work studying the training procedure to properly integrate both types of information for ECG signals classification.

Keywords: deep learning; electrocardiogram; electrophysiology; machine learning.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources