Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov:181:85-94.
doi: 10.1016/j.ijpsycho.2022.08.005. Epub 2022 Aug 31.

Electroencephalographic hallmarks of Alzheimer's disease

Affiliations
Review

Electroencephalographic hallmarks of Alzheimer's disease

Florinda Ferreri et al. Int J Psychophysiol. 2022 Nov.

Abstract

In the human brain, physiological aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission and information flow. However, there is increasing evidence to support the notion that the aged brain has a remarkable level of resilience (i.s. ability to reorganize itself), with the aim of preserving its physiological activity. It is therefore of paramount interest to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated to age-related neurological progressive diseases like Alzheimer's disease. EEG, alone and combined with transcranial magnetic stimulation (TMS-EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated in ecological scenarios including behavioral tasks. In this review, we aimed to provide the reader with updated information about the role of modern methods of EEG and TMS-EEG analysis in the investigation of physiological brain aging and Alzheimer's disease. In particular, we focused on data about cortical connectivity obtained by using readouts such graph theory network brain organization and architecture, and transcranial evoked potentials (TEPs) during TMS-EEG. Overall, findings in the literature support an important potential contribution of such neurophysiological techniques to the understanding of the mechanisms underlying normal brain aging and the early (prodromal/pre-symptomatic) stages of dementia.

Keywords: Aging; Artificial intelligence; Brain connectivity; Dementia; EEG; TMS-EEG.

PubMed Disclaimer

Publication types

LinkOut - more resources