Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria
- PMID: 36056029
- PMCID: PMC9440211
- DOI: 10.1038/s41467-022-32829-5
Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria
Abstract
Transcription rates are regulated by the interactions between RNA polymerase, sigma factor, and promoter DNA sequences in bacteria. However, it remains unclear how non-canonical sequence motifs collectively control transcription rates. Here, we combine massively parallel assays, biophysics, and machine learning to develop a 346-parameter model that predicts site-specific transcription initiation rates for any σ70 promoter sequence, validated across 22132 bacterial promoters with diverse sequences. We apply the model to predict genetic context effects, design σ70 promoters with desired transcription rates, and identify undesired promoters inside engineered genetic systems. The model provides a biophysical basis for understanding gene regulation in natural genetic systems and precise transcriptional control for engineering synthetic genetic systems.
© 2022. The Author(s).
Conflict of interest statement
H.M.S. is a founder of De Novo DNA. T.L.L. and A.H. declare no competing interests.
Figures
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
