Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Sep 3;21(1):173.
doi: 10.1186/s12933-022-01607-4.

Dapagliflozin improves myocardial flow reserve in patients with type 2 diabetes: the DAPAHEART Trial: a preliminary report

Affiliations
Randomized Controlled Trial

Dapagliflozin improves myocardial flow reserve in patients with type 2 diabetes: the DAPAHEART Trial: a preliminary report

Lucia Leccisotti et al. Cardiovasc Diabetol. .

Abstract

Objective: Cardiovascular (CV) outcome trials have shown that in patients with type 2 diabetes (T2D), treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduces CV mortality and hospital admission rates for heart failure (HF). However, the mechanisms behind these benefits are not fully understood. This study was performed to investigate the effects of the SGLT-2i dapagliflozin on myocardial perfusion and glucose metabolism in patients with T2D and stable coronary artery disease (coronary stenosis ≥ 30% and < 80%), with or without previous percutaneous coronary intervention (> 6 months) but no HF.

Methods: This was a single-center, prospective, randomized, double-blind, controlled clinical trial including 16 patients with T2D randomized to SGLT-2i dapagliflozin (10 mg daily) or placebo. The primary outcome was to detect changes in myocardial glucose uptake (MGU) from baseline to 4 weeks after treatment initiation by [(18)F]2-deoxy-2-fluoro-D-glucose (FDG) PET/CT during hyperinsulinemic euglycemic clamp. The main secondary outcome was to assess whether the hypothetical changes in MGU were associated with changes in myocardial blood flow (MBF) and myocardial flow reserve (MFR) measured by 13N-ammonia PET/CT. The study was registered at eudract.ema.europa.eu (EudraCT No. 2016-003614-27) and ClinicalTrials.gov (NCT03313752).

Results: 16 patients were randomized to dapagliflozin (n = 8) or placebo (n = 8). The groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, renal and heart function). There was no significant change in MGU during euglycemic hyperinsulinemic clamp in the dapagliflozin group (2.22 ± 0.59 vs 1.92 ± 0.42 μmol/100 g/min, p = 0.41) compared with the placebo group (2.00 ± 0.55 vs 1.60 ± 0.45 μmol/100 g/min, p = 0.5). Dapagliflozin significantly improved MFR (2.56 ± 0.26 vs 3.59 ± 0.35 p = 0.006 compared with the placebo group 2.34 ± 0.21 vs 2.38 ± 0.24 p = 0.81; pint = 0.001) associated with a reduction in resting MBF corrected for cardiac workload (p = 0.005; pint = 0.045). A trend toward an increase in stress MBF was also detected (p = 0.054).

Conclusions: SGLT-2 inhibition increases MFR in T2D patients. We provide new insight into SGLT-2i CV benefits, as our data show that patients on SGLT-2i are more resistant to the detrimental effects of obstructive coronary atherosclerosis due to increased MFR, probably caused by an improvement in coronary microvascular dysfunction. Trial registration EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.

Keywords: Diabetes; Metabolism; Myocardial blood flow; PET; Perfusion; SGLT-2.

PubMed Disclaimer

Conflict of interest statement

None of the authors have any competing interests in the manuscript.

Figures

Fig. 1
Fig. 1
Myocardial glucose uptake (MGU). A Data are mean ± SEM; B FDG PET/CT images during euglycemic hyperinsulinemic clamp of two representative cases: fused and 3D maximum intensity projection anterior views pre- and post-placebo and pre- and post-dapagliflozin, respectively
Fig. 2
Fig. 2
Myocardial perfusion: Myocardial flow reserve (A); resting myocardial blood flow (MBF) corrected for rate pressure product (B); stress myocardial blood flow (C); Data are mean ± SEM; **p < 0.01. Myocardial perfusion PET images of two representative cases: regional and global myocardial blood flow (MBF) and myocardial flow reserve (MFR) quantification at rest and during adenosine stress pre- and post-placebo (D) and pre- and post-dapagliflozin (E), respectively

References

    1. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front Endocrinol (Lausanne) 2018;9:2. - PMC - PubMed
    1. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2016;374:1094. - PubMed
    1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, Group CPC Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. - PubMed
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, Investigators DT. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–357. - PubMed
    1. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW, Investigators CT. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–2306. - PubMed

Publication types

MeSH terms

Associated data

LinkOut - more resources