Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 19;61(37):14487-14499.
doi: 10.1021/acs.inorgchem.2c02197. Epub 2022 Sep 6.

Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes

Affiliations

Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes

Janet R Morrow et al. Inorg Chem. .

Abstract

The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.

PubMed Disclaimer

LinkOut - more resources