Predator Presence Alters Intestinal Microbiota in Mussel
- PMID: 36068360
- DOI: 10.1007/s00248-022-02106-5
Predator Presence Alters Intestinal Microbiota in Mussel
Abstract
Intestinal microbes are essential participants in host vital activities. The composition of the microbiota is closely related to the environmental factors. Predator presence may impact on intestinal microbiota of prey. In the present study, stone crab Charybdis japonica was used as potential predator, an external stress on mussel Mytilus coruscus, to investigate the intestinal microbiota alteration in M. coruscus. We set up two forms of predator presence including free crab and trapped crab, with a blank treatment without crab. The composition of intestinal microbiota in mussels among different treatments showed significant differences by 16S rRNA techniques. The biodiversity increased with trapped crab presence, but decreased with free crab presence. Neisseria, the most abundant genus, fell with the presence of crabs. Besides, the Arcobacter, a kind of pathogenic bacteria, increased with free crab presence. Regarding PICRUTs analysis, Environmental Information Processing, Genetic Information Processing and Metabolism showed differences in crab presence treatments compared with the blank, with a bit higher in the presence of free crab than trapped crab. In conclusion, trapped crab effects activated the metabolism and immunity of the intestinal flora, but free crabs made mussels more susceptible to disease and mortality, corresponding to the decreased biodiversity and the increased Arcobacter in their intestine.
Keywords: 16S rRNA; Byssus; Charybdis Japonica; Intestinal Microbiota; Mussel; Predator Presence.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia.Mar Environ Res. 2015 Aug;109:159-67. doi: 10.1016/j.marenvres.2015.07.008. Epub 2015 Jul 17. Mar Environ Res. 2015. PMID: 26210406
-
Effects of elevated temperature and different crystal structures of TiO2 nanoparticles on the gut microbiota of mussel Mytilus coruscus.Mar Pollut Bull. 2024 Feb;199:115979. doi: 10.1016/j.marpolbul.2023.115979. Epub 2024 Jan 2. Mar Pollut Bull. 2024. PMID: 38171167
-
Profiling intestinal microbiota of Metaplax longipes and Helice japonica and their co-occurrence relationships with habitat microbes.Sci Rep. 2021 Oct 27;11(1):21217. doi: 10.1038/s41598-021-00810-9. Sci Rep. 2021. PMID: 34707208 Free PMC article.
-
Phylogenetic analysis of intestinal bacteria in the Chinese mitten crab (Eriocheir sinensis).J Appl Microbiol. 2007 Sep;103(3):675-82. doi: 10.1111/j.1365-2672.2007.03295.x. J Appl Microbiol. 2007. PMID: 17714401
-
Comparative analysis of the intestinal bacterial communities in mud crab Scylla serrata in South India.Microbiologyopen. 2021 Mar;10(2):e1179. doi: 10.1002/mbo3.1179. Microbiologyopen. 2021. PMID: 33970543 Free PMC article.
Cited by
-
The impact of altered dietary adenine concentrations on the gut microbiota in Drosophila.Front Microbiol. 2024 Aug 5;15:1433155. doi: 10.3389/fmicb.2024.1433155. eCollection 2024. Front Microbiol. 2024. PMID: 39161604 Free PMC article.
-
The Functional Significance of McMafF_G_K in Molluscs: Implications for Nrf2-Mediated Oxidative Stress Response.Int J Mol Sci. 2023 Nov 27;24(23):16800. doi: 10.3390/ijms242316800. Int J Mol Sci. 2023. PMID: 38069123 Free PMC article.
-
Effect of different fermentation substrates on rumen microorganisms and microbe-derived extracellular vesicles (EVs).Braz J Microbiol. 2025 Jun;56(2):1399-1409. doi: 10.1007/s42770-025-01673-2. Epub 2025 Apr 23. Braz J Microbiol. 2025. PMID: 40266485
-
Characteristics and a comparison of the gut microbiota in two frog species at the beginning and end of hibernation.Front Microbiol. 2023 May 3;14:1057398. doi: 10.3389/fmicb.2023.1057398. eCollection 2023. Front Microbiol. 2023. PMID: 37206336 Free PMC article.
-
Dynamic responses of gut microbiota to agricultural and wildfire ash: insights from different amphibian developmental stages.Front Microbiol. 2025 Aug 13;16:1598446. doi: 10.3389/fmicb.2025.1598446. eCollection 2025. Front Microbiol. 2025. PMID: 40881301 Free PMC article.
References
-
- Kosloski ME, Dietl GP, Handley JC (2017) Anatomy of a cline: dissecting anti-predatory adaptations in a marine gastropod along the US Atlantic coast. Ecography 40:1285–1299. https://doi.org/10.1111/ecog.02444 - DOI
-
- Ling H, Fu S, Zeng L (2019) Predator stress decreases standard metabolic rate and growth in juvenile crucian carp under changing food availability. Comp Biochem 231:149–157. https://doi.org/10.1016/j.cbpa.2019.02.016 - DOI
-
- Madin EMP, Dill LM, Ridlon AD, Heithaus MR, Warner RR (2016) Human activities change marine ecosystems by altering predation risk. Glob Change Biol 22:44–60. https://doi.org/10.1111/gcb.13083 - DOI
-
- Breviglieri CPB, Oliveira PS, Romero GQ (2017) Fear mediates trophic cascades: nonconsumptive effects of predators drive aquatic ecosystem function. Am Nat 189:490–500. https://doi.org/10.1086/691262 - DOI - PubMed
-
- Scrosati RA (2021) Nonconsumptive predator effects on prey demography: recent advances using intertidal invertebrates. Front Ecol Evol 9. https://doi.org/10.3389/fevo.2021.626869
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources