Mapping QTLs for yield and photosynthesis-related traits in three consecutive backcross populations of Oryza sativa cultivar Cottondora Sannalu (MTU1010) and Oryza rufipogon
- PMID: 36070104
- DOI: 10.1007/s00425-022-03983-3
Mapping QTLs for yield and photosynthesis-related traits in three consecutive backcross populations of Oryza sativa cultivar Cottondora Sannalu (MTU1010) and Oryza rufipogon
Abstract
Identification of trait enhancing QTLs for yield and photosynthesis-related traits in rice using interspecific mapping population and chromosome segment substitution lines derived from a cross between Oryza sativa and Oryza rufipogon. Wild rice contains novel genes which can help in improving rice yield. Common wild rice Oryza rufipogon is a known source for enhanced photosynthesis and yield-related traits. We developed BC2F2:3:4 mapping populations using O. rufipogon IC309814 with high photosynthetic rate as donor, and elite cultivar MTU1010 as recurrent parent. Evaluation of 238 BC2F2 families for 13 yield-related traits and 208 BC2F2 families for seven photosynthesis-related physiological traits resulted in identification of significantly different lines which performed better than MTU1010 for various yield contributing traits. 49 QTLs were identified for 13 yield traits and 7 QTLs for photosynthesis-related traits in BC2F2. In addition, 34 QTLs in BC2F3 and 26 QTLs in BC2F4 were also detected for yield traits.11 common QTLs were identified in three consecutive generations and their trait-increasing alleles were derived from O. rufipogon. Significantly, one major effect common QTL qTGW3.1 for thousand grain weight with average phenotypic variance 8.1% and one novel QTL qBM7.1 for biomass were identified. Photosynthesis-related QTLs qPN9.1, qPN12.1, qPN12.2 qSPAD1.1 and qSPAD6.1 showed additive effect from O. rufipogon. A set of 145 CSSLs were identified in BC2F2 which together represented 87% of O. rufipogon genome. In addition, 87 of the 145 CSSLs were significantly different than MTU1010 for at least one trait. The major effect QTLs can be fine mapped for gene discovery. CSSLs developed in this study are a good source of novel alleles from O. rufipogon in the background of Cottondora Sannalu for rapid improvement of any trait in rice.
Keywords: BILs; CSSLs; Oryza rufipogon; Photosynthesis; QTLs; Wild rice; Yield.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice (Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1.Biomolecules. 2022 Dec 11;12(12):1850. doi: 10.3390/biom12121850. Biomolecules. 2022. PMID: 36551278 Free PMC article.
-
Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.Theor Appl Genet. 2003 Aug;107(3):479-93. doi: 10.1007/s00122-003-1270-8. Epub 2003 May 8. Theor Appl Genet. 2003. PMID: 12736777
-
Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice (Oryza rufipogon Griff.) under Rice (Oryza sativa L.) Background and the Identification of QTLs for Plant Architecture, Agronomic Traits and Cold Tolerance.Genes (Basel). 2020 Aug 22;11(9):980. doi: 10.3390/genes11090980. Genes (Basel). 2020. PMID: 32842674 Free PMC article.
-
Yield-related QTLs and their applications in rice genetic improvement.J Integr Plant Biol. 2012 May;54(5):300-11. doi: 10.1111/j.1744-7909.2012.01117.x. J Integr Plant Biol. 2012. PMID: 22463712 Review.
-
Marker-assisted selection for grain number and yield-related traits of rice (Oryza sativa L.).Physiol Mol Biol Plants. 2020 May;26(5):885-898. doi: 10.1007/s12298-020-00773-7. Epub 2020 Mar 27. Physiol Mol Biol Plants. 2020. PMID: 32377039 Free PMC article. Review.
Cited by
-
Fine mapping of interspecific secondary CSSL populations revealed key regulators for grain weight at qTGW3.1 locus from Oryza nivara.Physiol Mol Biol Plants. 2024 Jul;30(7):1145-1160. doi: 10.1007/s12298-024-01483-0. Epub 2024 Jul 13. Physiol Mol Biol Plants. 2024. PMID: 39100880 Free PMC article.
References
-
- Adachi S, Yoshikawa K, Yamanouchi U, Tanabata T, Sun J, Ookawa T, Yamamoto T, Sage RF, Hirasawa T, Yonemaru J (2017) Fine mapping of carbon assimilation rate 8, a quantitative trait locus for flag leaf nitrogen content, stomatal conductance and photosynthesis in rice. Front Plant Sci 8:60 - PubMed - PMC
-
- Adachi S, Yamamoto T, Nakae T, Yamashita M, Uchida M (2019) Genetic architecture of leaf photosynthesis in rice revealed by different types of reciprocal mapping populations. Jexp Bot. https://doi.org/10.1093/jxb/erz303 - DOI
-
- AddankiKR BD, Yadavalli VR, Surapaneni M, Mesapogu S, BeerelliK and NeelamrajuS, (2018) Swarna × Oryzanivaraintrogression lines: a resource for seedling vigour traits in rice. Plant Genet Resour 17:12–23
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources