Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May 5;26(9):2410-8.
doi: 10.1021/bi00383a003.

Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the beta and delta chains

Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the beta and delta chains

J Giraudat et al. Biochemistry. .

Abstract

The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker [3H]chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled beta chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the beta chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain [Giraudat, J., Dennis, M., Heidmann, T., Chang, J. Y., & Changeux, J.-P. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2719-2723]. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.

PubMed Disclaimer

Publication types

LinkOut - more resources