Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Aug 7;902(1):24-30.
doi: 10.1016/0005-2736(87)90132-5.

Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior

Comparative Study

Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior

V W Hu et al. Biochim Biophys Acta. .

Abstract

The insertion of the A domain of diphtheria toxin into model membranes has been shown to be both pH- and temperature-dependent (Hu and Holmes (1984) J. Biol. Chem. 259, 12226-12233). In this report, the insertion behavior of two mutant proteins of diphtheria toxin, CRM197 and CRM9, was studied and compared to that of wild-type toxin. Results indicated that both CRM197 and CRM9 resembled toxin with respect to the pH-dependence of binding to negatively-charged liposomes at room temperature. However, CRM197 differed from toxin with respect to both the pH- and temperature-dependence of fragment A insertion; fragment A197 inserts more readily into the bilayer at 0 degrees C and low pH or at neutral pH and room temperature than does wild type fragment A under these same conditions. This result indicates that the single amino acid substitution in the A domain of CRM197 facilitates entry of fragment A197 into the membrane, suggesting that CRM197 may be conformationally distinct from native toxin. In fact, the fluorescence spectra of CRM197 and wild-type toxin as well as their respective tryptic peptide patterns indicate that, at pH 7, CRM197 more closely resembles the acid form of wild-type toxin than the native form of toxin. These data suggest that CRM197 may be naturally in a more 'insertion-competent' conformation. In contrast, the mutation in the B domain of CRM9 which results in a 1000-fold decrease in binding affinity for plasma membrane receptors apparently does not cause a change in either the insertion of fragment A9 or the lipid-binding properties of CRM9 relative to toxin.

PubMed Disclaimer

Publication types

LinkOut - more resources